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Perel S, Schwartz AB, Ventura V. Automatic scan test for
detection of functional connectivity between cortex and muscles. J
Neurophysiol 112: 490-499, 2014. First published April 23, 2014;
doi:10.1152/jn.00800.2011.—Postspike effects (PSEs) in averages
of spike-triggered EMG snippets provide physiological evidence of
connectivity between CMN cells and spinal motoneurons innervating
skeletal muscles. They are typically detected by visual inspection of
spike-triggered averages (SpTAs) or by multiple-fragment/single-
snippet analyses [MFA (Poliakov AV, Schieber MH. J Neurosci
Methods 79: 143-150, 1998) and SSA (Perel S, Schwartz AB,
Ventura V. Neural Comput 26: 40-56, 2014)]; the latter are automatic
tests that yield P values. However, MFA/SSA are only effective to
detect PSEs that occur at about 6-16 ms posttrigger. Our first
contribution is the scan test, an automatic test that has the same utility
as SpTA, i.e., it can detect a wide range of PSEs at any latency, but
it also yields a P value. Our second contribution is a thorough
investigation of the statistical properties of PSE detection tests. We
show that when the PSE is weak or the sample size is small, visual
inspections of SpTAs have low power, because it is difficult to
distinguish PSEs from background EMG variations. We also show
that the scan test has better power and that its rate of spurious
detections matches the chosen significance level a. This is especially
important for investigators because, when a PSE is detected, this
guarantees that the probability of a spurious PSE is less than c.
Finally, we illustrate the operational characteristics of the PSE detec-
tion tests on 2,059 datasets from 5 experiments. The scan test is
particularly useful to identify candidate PSEs, which can then be
subject to further evaluation by SpTA inspection, and when PSEs are
small and visual detection is ambiguous.

electromyography; postspike effect; scan test; single-snippet analysis;
spike-triggered average

THE MOTOR CORTEX WAS ORIGINALLY defined as an area of cortex
from which muscle contraction is elicited (Fritsch and Hitzig
1870). We now know that both direct and indirect projections
originate from the motor cortex and terminate in the motoneu-
ronal pools of the primate spinal cord. Projections from sub-
cortical and spinal structures also converge in these pools and,
together, determine the excitability of the motor units respon-
sible for muscle contraction.

The effect of a neuron on motoneuron excitability is typi-
cally detected using spike-triggered averaging (SpTA; Fetz et
al. 1976; Fetz and Cheney 1980; McKiernan et al. 1998): after
each cortical spike, a short electromyography (EMG) snippet
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from a target muscle is collected; if the cortical neuron gener-
ates a postspike effect (PSE) in the EMG, a characteristic
waveform will emerge in the average of these EMG snippets.
Because many factors in addition to the recorded spikes con-
tribute to motoneurons excitability, the effect of a single
neuron on the EMG is weak and may require many snippets (at
least 2,000, but sometimes up to 20,000 spikes; Fetz and
Cheney 1980) to yield a clear waveform in the SpTA.

The multiple-fragment analysis (MFA; Poliakov and Schieber
1998) is an alternative PSE detection test that is automatic, i.e.,
does not rely on visual inspection or subjective judgment. It is
especially useful in small samples, when PSEs are difficult to
distinguish from the EMG baseline activity, and it can be
applied automatically and quickly to many datasets. However,
the MFA is not as flexible as SpTA visual inspections: the
former is designed to detect PSEs around the 6-16 ms post-
spike latency, the latter allows PSEs to be detected at any
latency.

In this article, we develop the scan test, a formal statis-
tical test that has the same utility as SpTA visual inspec-
tions, i.e., it can detect PSEs at any posttrigger latency, but
that has the advantage of being fully automatic, so it can be
applied quickly when many datasets must be analyzed. We
perform an extensive study to show that the scan test has the
expected rate of spurious detections and has more power to
detect PSEs than SpTA visual inspections. Power is espe-
cially important in small samples, when PSEs are difficult to
distinguish from the EMG background.

This work was primarily motivated by the need to inspect over
1,700 SpTAs in the Grasp experiment described in RESULTS, a
tedious task that is also particularly difficult in these datasets,
because most contain between 700 and 5,000 spike triggers, a
number often too small to visually identify PSEs unequivo-
cally. This work is also generally useful because large datasets
of neuron-EMG recordings are becoming increasingly preva-
lent with the use of chronically implanted electrode arrays. An
automatic and efficient PSE detection method helps prescreen
those data to look for candidate PSEs, which can then be
subject to further evaluation by SpTA or other means.

METHODS

We first review the current methods to detect PSEs: visual inspec-
tion of SpTAs and MFA/single-snippet analyses (SSA). We then
extend the MFA/SSA to an automatic scan test that can detect PSEs
at any latencies.
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PSEs Can Be Detected at Any Latency by Visual Inspection of a
SpTA

An SpTA shows the changes in the EMG activity of a muscle
following spikes from a cortical neuron. Given K cortical spikes and
simultaneously recorded EMG activity, spike-triggered EMG snippets
are collected around every spike and rectified to minimize the can-
cellations caused by averaging overlapping positive and negative
components of motor unit action potentials. The SpTA is computed by
averaging these rectified snippets across time according to

1 K
SpTA(f) = %;1 EMG, (1), ()

where typically, ¢ ranges from —20 to 40 ms relative to the trigger at
t = 0. A wide interval allows the baseline mean (M) and standard
deviation (SD) of the SpTA in the pre and posttrigger periods to be
estimated. A PSE is usually considered present at time #* if SpTA(?)
exceeds M = 2SD around ¢ = #*. The times when the SpTA exits and
reenters the bands are called the PSE onset and offset; the extremum
between onset and offset is called the peak of the effect; the peak
width at half-maximum (PWHM) is the excursion width at half the
height between the PSE peak and the baseline mean M. PSEs are
divided into postspike facilitation and suppression effects, depending
on whether the waveform appearing in the SpTA is a peak or a trough.
PSEs are further classified as pure or synchrony effects: a PSE is often
considered pure if it begins at a latency consistent with conduction
times from cortical neurons to spinal motoneurons and is narrow
enough to reflect monosynaptic or disynaptic connectivity, although
caution must be taken when using these criteria (Smith and Fetz
2009). When the PSE onset is earlier than the shortest possible
conduction time from cortex to the spinal cord, it is classified as
synchrony PSE.

SpTA visual inspection. PSE detection by visual inspection of an
SpTA is subjective. We followed these guidelines:

1) We de-trend the SpTA: we fit a linear regression to, and subtract
it from, the SpTA (Bennett and Lemon 1994).

2) If a PSE with onset times in the [—5,20]-ms range appears
clearly, we record it.

3) If the SpTA exhibits deviations that are not obvious PSEs:

i) we calculate the M and SD of the detrended SpTA in three
baseline windows: [—5,5] ms around the spike-trigger (Kasser and
Cheney 1985), [—20,—10] ms pretrigger (McKiernan et al. 1998), and
[—30,—10] ms pretrigger (Schieber 2005);

ii) if the largest deviation exceeds at least one of the three M =*
2SD bands, if it is not excessively narrow, and if the SpTA displays
no other oscillations with similar excursions outside the bands, we
deem this deviation a PSE.

Automatic SpTA inspection. The main goal of this article is to
develop a PSE detection test that can be applied reliably, automati-

B
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cally, and quickly to a large number of neuron-EMG datasets. An
obvious candidate is an automated version of the SpTA visual
inspection:

1) A computer program de-trends the SpTA and calculates the M
and SD of the detrended SpTA in three baseline windows: [—5,5] ms
around the spike trigger, [—20,—10] ms pretrigger, and [—30,—10]
ms pretrigger, as in the visual inspection, steps I and 3i.

2) The computer program identifies all SpTA excursions outside
the M = 2SD bands, and retains the largest as a potential PSE. The
three M = 2SD bands are used in turn, which yields three tests we
refer to as the automatic SpTA1, SpTA2, and SpTA3 inspections.

3) If the onset time of the largest excursion is in the [—5,20]-ms
range, and its PWHM exceeds 5 ms, we deem the largest excursion a
PSE. The 5-ms PWHM threshold is an important choice we discuss in
RESULTS.

Automated SpTA inspections are not completely faithful to visual
inspections, because they do not use expert detection skills that are hard
to automatize: e.g., a small dip prior to the PSE onset is often present in
PSEs considered monosynaptic; multiple excursions of the SpTA outside
M = 2SD, which happens for the three SpTAs in Fig. 1, B-D, might be
considered evidence against PSE significance.

PSEs Can Be Detected Automatically at Fixed Latencies by MFA/
SSA

Visual inspections of SpTAs require human intervention. The MFA
(Poliakov and Schieber 1998) is automatic. The K-rectified EMG
snippets used in Eq. 1 are divided into G = \/K fragments, and their
respective SpTAs calculated; let SpTA () denote the SpTA in frag-
ment ¢ = 1,..., G. Then for all g, one calculates a difference
between the peak and the baseline of SpTA(?) as

X, = SpTA, ([6. 16] ms) — > {SpTA,([~4.6] ms) ”
+ SpTA,([16,26] ms)}

where SpTA,([a,b] ms) denotes the average of SpTA,(f) over t €
[a,b] (the spike-trigger is at ¢ = 0). Differential amplitude values X,
that deviate from zero provide evidence of a PSE around 6-16 ms
postspike. Poliakov and Schieber (1998) calculate a standardized
summary of these deviations:

T X 3
where X is the mean of the X, .S and SE(X) its standard error, and they
compare the deviations of 7 from zero to the standard normal

distribution. They reject the null hypothesis of no PSE at the 5%
significance level if 7 > 1.96, with corresponding P value

D

-20 0 20 40 -20 0 20 40
Time (ms) Time (ms)

Fig. 1. Spike-triggered averages (SpTAs) of Digit Flexion datasets. A: SpTA of the full dataset (32,087 spikes); a PSE is clearly visible. B, C, and D: SpTAs
of randomly subsampled datasets of sizes K = 800, 1,000, and 7,000. The vertical bars on top span the 6 — 16 ms posttrigger interval. The horizontal lines are
at M and M * 2SD, where M and SD? are the baseline SpTA mean and variance in the [—20,—10]-ms interval pretrigger. The subsampled datasets contain
Postspike effects (PSEs), but they are hard to identify visually in small samples. The bootstrap scan test detects the PSEs in all cases, with P values P < 0.0001
(A), P = 0.01 (B), P = 0.0001 (C), and P = 0.0001 (D).
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p=2[1-®D], 4)

where @ is the standard normal cumulative distribution. The MFA is
effectively a two-tailed r-test to test if the true mean of X, is zero, so
any statistical computer package will automatically output Egs. 3 and
4. If suppression or facilitation PSEs are of specific interest, Perel et
al. (2014) suggest replacing the two-sided 7-test by a one-sided #-test,
to increase the power of MFA to detect these specific PSEs.

Two classic MFA variants exist. Both use G = \/K fragments, but
they use a different repartition of snippets per fragment: Poliakov and
Schieber (1998) divide the experimental time into G periods of equal
length and assign to fragment g the snippets in period g; Davidson et
al. (2007) form fragments of equal sizes by grouping every \/K
consecutive snippets. Perel et al. (2014) proposed the SSA, a related
method that avoids fragmenting the data altogether. They show that
SSA and the equal-sized fragment MFA have similar statistical
properties and typically have better detection power than the original
MFA of Poliakov and Schieber (1998).

The MFA/SSA tests rely on the assumption that 7" is standard
normal when the data contain no PSE. Perel et al. (2014) showed that
1) the first assumption is typically met but may be questionable in
small samples or when the SpTA baseline is not linear; 2) when they
exist, the deviations from standard normality are small; and 3) simple
bootstrap adjustments can be applied to correct the deviations.

Automatic Fixed-Latency Tests Can Be Scanned Across the SpTA
To Detect PSEs at Any Latency

Let 7(I) denote the SpTA differential amplitude calculated on the
portion of the EMG snippets centered at time /, and p(l) its corre-
sponding P value (using a one- or two-tailed tests depending on what
type of PSE is of interest), so that 7(/) and p(l) with / =11 ms are T'
and p in Egs. 3 and 4. When we use a fixed-latency test such as the
MFA or SSA, the assumption is that the SpTA has maximal differ-
ential amplitude between 6 and 16 ms postspike, measured by 7(11
ms) in Eq. 3. Depending on axonal and motoneuronal conduction
velocities, the largest SpTA differential amplitude might occur at a
different latency, which we would like to determine. A simple option
consists of testing for PSEs at L postspike latencies and concluding
that PSEs are present at all latencies / such that p(/) = o/L; the
Bonferroni corrected significance level o/L guarantees that the prob-
ability of detecting at least one spurious PSE is less than a. We
reformulate this multiple test as a “scan test,” which is approximately
equivalent, albeit constrained to detect at most one PSE.

Scan test. Given a neuron-EMG pair, we consider searching for
PSEs at L postspike latencies spaced b ms apart, starting at [ = [:

1) Perform the MFA with equal sized fragments, or the SSA, at
latency /,, and store the P value, p(/,). Repeat at the other latencies,
and store the corresponding P values, p([).

2) Evaluate the P value of the scan test:

Pean =1 — (1= 5F Q)
(details are in APPENDIX A), where S is the smallest of the L P values:
S = min p(l). 6)

!

3) Conclusion: if p.,, > «, there is no PSE in the data (or the test
has insufficient power to detect it). If p,.,, = «, there is a PSE at

latency peak of maximal SpTA differential amplitude / = argmin, p(/)
(it may be spurious with probability less than «).

We must choose at which postspike latencies to scan the test; for
example, with b = 2 ms and /[, = 9 ms, wescanat/ = 9, 11, 13 ms,
etc. When b is small, overlapping portions of EMG contribute to
successive T(l)s, so the T(l)s are correlated. Then the Bonferroni
correction, and hence the scan test, are conservative, as illustrated in
RESULTS and APPENDIX A. This happens because the (unknown) effec-
tive number M of independent scans is smaller than the actual number

L, so we should use the less stringent significance level a/M in place
of a/L. To resolve this issue, we can either increase the scan step b to
avoid serial correlations in the 7(/)s or proceed with a small scan step,
b = 1 ms say, and replace the parametric P value (Eq. 5) by a
nonparametric bootstrap P value that does not rely on the indepen-
dence assumption. We describe these two options below.

Determining the scan step b. The scan test P value (Eq. 5) depends
on a parametric distribution for S that is valid provided the 7(/)s are
independent. We use bootstrap diagnostics (Canty et al. 2006) to
choose a scan step b large enough to satisty this assumption. The idea
is to compare the assumed parametric distribution of S (APPENDIX A,
Egq. 7) to its bootstrap distribution, the latter being an approximation
to the true distribution. If the two distributions match, then Eq. 5 is
valid; otherwise, a nonparametric bootstrap P value must be obtained
or the scan step » must be increased.

To compare the two distributions, we simulate a bootstrap sample,
ST’ s;’, S ,s;’ of size R = 100, as described below, and plot their
ordered values against the theoretical quantiles of S, {1 — [1 —
JIR+1)]Y},j=1,..., Rto obtain a quantile-quantile (QQ) plot: the
two distributions match only if the points lie close to the line with
intercept 0 and slope 1; APPENDIX A (see Fig. A1) contains an example.
For the data analyzed here, we found that » = 8 ms was the smallest
scan step satisfying the independence assumption.

Bootstrap corrected scan test. The scan test is conservative when b
is small, i.e., py.,, 1S biased upwards. This has no consequence when
the test is significant (p,.,, = ) since an unbiased P value will be
smaller and yield the same conclusion, or when p,,, is so large as to
suggest that the data contain no evidence at all of a PSE. However,
when p..., € [a,5a], we replace it with an unbiased bootstrap P
value, as follows:

1) Obtain a sample of at least R = 500 bootstrap null values of §
(Eq. 6), as follows. For r = 1,..., R:

i) Add normal jitters (SD = 30 ms) to the observed spike triggers,
as justified in Perel et al. (2014) and collect the rectified EMG snippets
corresponding to the jittered triggers. This is a bootstrap sample.

ii) Calculate s: the value of S (Eq. 6) in bootstrap sample r.

2) Replace p,.,, by the nonparametric bootstrap P value:

Pscan = #(S: = S)/R’

the proportion of bootstrap values that are less than S. Details are in
APPENDIX A.
3) Conclusion: if p ., > «, there is no PSE in the data. If p,_,, =

«, there is a PSE at latency peak I = argmin, p(/).

The scan test with an appropriately large step b and the bootstrap
scan test are approximately equivalent, with the following differences:
the former will lose power if it is not scanned exactly at the latency of
maximal SpTA differential amplitude: we observe this in RESULTS, and
it is not fully automatic since b is chosen by trial and error; the
bootstrap scan test is fully automatic but requires a larger bootstrap
simulation.

The scan tests are forms of automatic SpTA inspections, since they
effectively measure and test the significance of the maximal SpTA
differential amplitude, T(i). Further, T(i) can be used to compare PSEs
across muscles and experimental conditions. Indeed, it is conceptually
similar to the mean-percent increase, although it is normalized by the
SD of the differential EMG values (the X values in Eq. 2) rather than
by the baseline SpTA mean.

RESULTS

The methods available to detect PSEs at any posttrigger
latency are SpTA visual inspections and their automated coun-
terparts and the automatic uncorrected and bootstrap corrected
scan tests (see METHODS). Here, we study the statistical
properties of these tests, i.e., their spurious detections rates and
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powers to detect effects, and illustrate their application to
neuron-EMG data from the following five experiments.

The grasp dataset motivated the methods presented here.
The data were collected in our laboratory, while a monkey
performed reach-to-grasp movements to a variety of objects at
different spatial locations and orientations. This task involved
higher levels of muscle contraction than unloaded wrist/digits
flexion/extension, which resulted in higher mean EMG levels.
Every unique combination of object and location/orientation
was presented 20 times, and we typically recorded 700 to 5,000
cortical spikes for every combination, which is often too little
to identify PSEs visually. The EMG was recorded using
custom made patch electrodes sutured to the epimysium
(adapted from Miller et al. 1993), bandpass filtered at 100—
2,000 Hz, and sampled at 4,882.8 Hz.

The two precision-grip datasets were collected in Dr. Roger
Lemon’s laboratory, while a monkey squeezed two spring-
loaded levels between the thumb and index fingers. The first
dataset consists of simultaneously recorded spike trains from 9
neurons and EMG activity from 7 muscles, with sizes ranging
from 27,403 to 67,653 spikes (Jackson et al. 2003), and the
second from 6 neurons and 12 muscles, with sizes ranging
from 2,611 to 15,189 spikes (Quallo et al. 2012). The EMG
was recorded using custom made patch electrodes sutured to
the epimysium (adapted from Miller et al. 1993) and sampled
at 5,000 Hz. Every neuron showed visible PSEs in three to five
muscles.

The wrist dataset was collected in Dr. Peter Strick’s labo-
ratory. It consists of simultaneously recorded spike trains from
10 neurons and EMG from 12 muscles, while a monkey
performed a center out, step-tracking wrist movement task
(Kakei 1999). The datasets contain from 2,260 to 33,851
spikes. Every neuron showed visible PSEs in one to seven
muscles. The EMG was recorded using stainless steel wire
electrodes implanted subcutaneously, bandpass filtered at 300—
3,000 Hz, and sampled at 4,000 Hz.

The digit-flexion dataset was collected in Dr. Marc
Schieber’s laboratory. It consists of simultaneously recorded
spike trains from two neurons and EMG from nine muscles,
while a monkey performed visually cued individuated flexion
and extension movements of the right finger and/or wrist
(Schieber 2005). The datasets contain from 19,076 to 32,087
spike triggers. One neuron showed visible PSEs in five muscles
and the other in eight muscles. The EMG was recorded using
stainless steel wire electrodes implanted percutaneously, band-
pass filtered at 300-3,000 Hz, and sampled at 5,000 Hz.

Figure 1A shows the SpTA of a digit flexion dataset of size
K = 32,087, and Fig. 1, B-D, shows the SpTAs of three
random subsamples of sizes K = 800,1000, and 7,000 from
that dataset. A PSE appears clearly in Fig. 1A. The SpTAs of
the three subsamples therefore also contain PSEs, but they are
harder to identify visually; it is up to the investigator to make
a decision. The bootstrap corrected scan test has the statistical
power to detect the PSEs in Fig. 1, B-D, with P = 0.01,
0.0001, and 0.0001, respectively. Below, we investigate more
fully the statistical properties of the PSE detection tests.

Properties of Tests: Rates of Spurious Detections

A statistical test of hypotheses yields either the correct
decision or one of two types of error: a type 1 error is a

spurious detection; a type 2 error is a false negative, when the
test fails to detect a real effect. The probabilities of these two
error types vary in opposite directions, so errors cannot be
eliminated. The accepted way to proceed is to design a test that
has a prespecified maximum probability of a type 1 error, e.g.,
a = 5%, referred to as the significance level. Then, when a
PSE is detected, we cannot be sure that it is real, since the truth
is unknown, but we know that it is spurious with probability
less than «. For a test to be reliable, it is therefore crucial that
its actual spurious detections rate be equal to, or less than, a.

The spurious detections rates of the tests considered here are
too difficult to derive analytically, so we estimate them by the
proportions of PSEs detected in null datasets, i.e., datasets that
contain no PSEs. The number of available experimental data-
sets is too small to estimate proportions accurately, and we
cannot be sure whether or not they actually contain PSEs. We
therefore create null datasets: given an experimental dataset,
we leave its EMG trace unchanged and destroy all precisely
time-locked effects by either /) adding Gaussian white noise
with variance 100% ms to all the spike triggers; or 2) random-
izing the interspike intervals of the cortical spikes; or 3) pairing
the EMG trace with a cortical spike train from another exper-
iment.

Figure 2 shows the estimated spurious detections rates of the
tests. We simulated 1,000 null datasets by jittering repeatedly
one experimental dataset and recorded the proportions of PSEs
detected in these datasets by the Bootstrap scan test, scan test
(from [ = 8 ms to / = 30 ms posttrigger, in steps of b = 1 and
4 ms), and automated SpTA inspections (baseline window
[—10,—20] ms pretrigger, PWHM threshold 2, 3, and 5 ms),
using the o = 5% significance level. We repeated this using
272 other experimental datasets and plotted the histograms of
the 273 detection proportions obtained by each test in Fig. 2.
The curve overlaid on each panel is the distribution we should
observe for a test with the correct a-level; it is centered at o =
5% and has some spread since the spurious detections rates are
estimated. The histogram for the bootstrap corrected scan test
(Fig. 2C) matches the expected distribution: this test has the
correct a-level. The histogram for the scan test with b = 1 ms
(Fig. 2A) has a similar shape but is centered ~2.1%, less than
half the nominal @« = 5%: the test is conservative, as we
anticipated, although not exceedingly so here, because we
scanned the tests at a relatively small number of latencies, L =
23. The scan test becomes less conservative with larger scan
steps: the average spurious detections rate is ~4.2% with b =
4 ms (Fig. 2B) and reaches the nominal @ = 5% with b = § ms
(not shown, but similar to Fig. 2C). The observed spurious
detections rates of automated SpTA inspections are plotted in
Fig. 2, D-F. Their distributions are strikingly different than
what we expect of a test with significance level @ = 5%. The
test is either exceedingly liberal, with spurious detections rates
as large as 50, 38, and 22% using 2-, 3-, and 5-ms PWHM
thresholds, respectively, or exceedingly conservative, with
over 80% of observed spurious detections rates <1% using a
5-ms threshold. That is, the spurious detections rates of auto-
mated SpTA inspections depend in nontrivial ways on the
PWHM threshold and the shape of the PSE to be detected,
which is unknown a priori.

To summarize, the bootstrap scan test and scan test with step
b = 8 ms have the expected rate of spurious detections. The
scan test becomes conservative when smaller steps are used,
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A

100 = Scan test, b=1ms

Fig. 2. Observed spurious detections rates of
the tests when the nominal significance level
is @ = 5%. Each histogram value is the
proportion of detections in 1,000 null datasets
created by jittering the cortical spikes of a
particular experimental dataset. Each histo-
gram contains values from 273 different ex- 0
perimental datasets. The overlaid curve is the 0 5
distribution we expect of a test that has the
correct « level. A: uncorrected scan test with
scan step b = 1 ms has spurious detections
rate lower than o: it is conservative. B: it
becomes is less conservative with larger scan D
steps; here b = 4 ms. C: bootstrap corrected 100 =
scan test has spurious detections rate that
matches the expected distribution. D—F: spu-
rious detections rates of the automated SpTA
visual inspections do not match their expected
distribution, regardless of the chosen peak
width at half-maximum (PWHM) threshold;
here PWHM = 2, 3, and 5 ms, respectively.

50 4

Distribution

PWHM=2ms

50 -

Distribution

0
0 5

Automated SpTA

B C

Scan test, b=4ms Bootstrap scan test

10 0 5 10 0 5 10

Spurious detection rate (%)

E F

Automated SpTA
PWHM=3ms

Automated SpTA
PWHM=5ms

10

Spurious detection rate (%)

although not exceedingly conservative if the number of
scanned latencies remains small; here, the maximum number
of scans is L = 23 when we scan every b = 1 ms to detect PSEs
in the [8,30] ms posttrigger window. A low spurious detections
rate is a very desirable property, but one that comes at the cost
of low power, as we show in the next section. The automated
SpTA inspection is unpredictably conservative or liberal, po-
tentially exceedingly so, and therefore cannot be trusted. All
observations about Fig. 2 extend to other commonly used
significance levels, e.g., @ = 1 and 10%, to other methods of
creating null datasets (interspike interval randomization and
shuffling) and to other baseline windows for automated SpTA
inspections (not shown).

Properties of Tests: Power

To maximize the chances of detecting PSEs, it is important
to use tests with high power, i.e., high probability of detecting
effects. In this section, we compare the powers of the PSE
detection tests, which we estimate by the proportions of data-
sets in which PSEs are detected. To do that, we need many
datasets with specific sample sizes and effect strengths; we
construct them as follows.

Parent and test datasets. Parent datasets are experimental
datasets whose SpTAs clearly display PSEs, e.g., in Figs. 1A
and 3, C, F, I, and L. There are 2 Grasp, 13 Digit Flexion, 48
Precision Grip, and 24 Wrist such datasets. Their PSEs span a
continuum from pure to combinations of pure-synchrony PSEs
and synchrony PSEs, with PWHM values ranging from 4 to 15
ms, onsets >3 ms, and offsets >18 ms; they are classified as
medium to strong, based on their mean percent increase and
peak percent increase values; some PSEs are narrower and
some wider than 10 ms, and some appear at latencies later than
16 ms postspike. To create a “test dataset” of size K, we choose
a spike trigger at random from a parent dataset, and retain that

spike and its (K — 1) successors; we wrap the spike train if
fewer than (K — 1) spikes follow the selected spike, and we
extract the K corresponding rectified EMG snippets from the
parent. This test dataset is subsampled from a parent dataset, so
it contains the same PSE, although it may be difficult to detect
visually when K is small, as was illustrated in Fig. 1, B-D. To
create a test dataset that contains a PSE of strength a €
[0,100]%, we sample a test dataset of size K, as above, jitter the
spikes of a randomly selected block of K-(100 — a) spike
triggers to remove time-locked effects in that block (normal
jitter, SD 100 ms) and extract the corresponding rectified EMG
snippets. This test dataset contains a PSE whose strength
depends on a: there is no PSE when a = 0%; when a = 100%,
the PSE is of strength similar to that of the parent.

Figure 3 shows the power curves of the PSE detection
tests in subsamples from the parent datasets whose SpTAs
are shown in Fig. 3, C, F, I, and L; the other parent datasets
produced similar results. To estimate power as a function of
sample size K, we sampled 1,000 test datasets of size K from
one parent dataset and recorded the proportions of PSEs
detected by each test. We repeated for many values of K,
capping K at half the number of spike triggers in the parent
dataset to avoid simulating repeat test datasets. We pro-
ceeded similarly to estimate power as function of effect
strength a, holding the sizes of all test datasets fixed at half
that of the parent dataset. Figure 3 shows that power
increases with sample size and effect strength, as we should
expect. When the PSE is strong (¢ ~ 1) or the number K of
spike triggers is large, e.g., in Fig. 3, J and K, the SpTA
baseline is less variable, and all tests detect the PSEs
consistently. When the effect is weaker or the sample size is
smaller, the tests do not always detect the PSEs that we
know exist, since the test datasets were sampled from
experimental datasets that do contain PSEs. The bootstrap
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SpTA inspections as functions of sample size K (A, D, G,
and J) and effect strength a (B, E, H, and K) for the parent
datasets with SpTAs in C, F, I, and L. C: narrow PSE
(PWHM = 3 ms) in a Precision Grip dataset of size
64,572. F: PSE in a Grasp dataset of size 5,193. I: wide
PSE (PWHM = 8.4 ms, onset 5.4 ms, offset 15 ms) in a
Precision Grip dataset of size 38,430. L: wide late syn-
chrony PSE (PWHM = 9.8 ms, onset 8.6 ms, offset 24.6

ms) in a Digit Flexion dataset of size 32,087. The vertical
bars on fop span the 6 — 16 ms posttrigger interval. The
horizontal lines are at M and M = 2SD, where M and
SD? are the baseline SpTA mean and variance in the
[—20,—10]-ms interval pretrigger. The scan tests are able
to detect narrow and wide PSEs, despite using a fixed
width 10-ms sliding window. They have uniformly better
power than SpTA detection, most notably in small sam-
ples (K small) and when the PSE is weak (a small). The
bootstrap scan test has better power than the uncorrected
test. There are no PSEs in the data when ¢ = 0 in B, E,
H, and K, in which case the power is the rate of spurious
detections: the bootstrap scan test has the correct rate, the

uncorrected test is conservative, and SpTA detection can
be very conservative.
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corrected scan test has the best power. The scan test with
b = 1 ms has lower power, a consequence of being conser-
vative. Its power first increases as we increase the scan-step,
and comes close to the power of the bootstrap scan test when
b ~ 4 ms, but decreases as we increase b further (not
shown), because it is then more likely to miss the location of
larger SpTA amplitude. We also plotted the power of the
automated SpTA inspection, even though we recommend
against using a test that does not control its rate of spurious
detections; we used a 5S-ms PWHM threshold to prevent the
test from being overly liberal. The power of this test varies
as unpredictably as its spurious detection rate and has
particularly low power to detect narrow or weak PSEs (Fig.
3,A, B, D, and E).

The power curves also give some information about the
sample sizes needed to detect PSEs with high probability. For
example, Fig. 3A shows that in datasets of size K ~ 20,000, the

Time (ms)

probability that the bootstrap scan test detects the PSE is close
to 100%; it is ~80% for the scan test with b = 1 ms and <20%
for automated SpTA inspections. In Fig. 3J, the bootstrap scan
test has full power with 3,000 spike triggers, while the auto-
mated SpTA inspection requires twice as many. Figure 3, C, I,
and L, each show a weak, medium, and strong PSE; the
bootstrap scan test requires about 20,000, 10,000, and 3,000
spike triggers in each case to detect these PSEs with probability
1, which is much fewer than the samples actually collected, and
fewer than needed to detect the PSEs with confidence by visual
inspection of SpTAs.

Detecting PSEs in the Experimental Datasets

We have studied the statistical properties of the PSE detec-
tion tests and found that the bootstrap scan test is most
powerful and controls its rate of spurious detections. Table 1
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Table 1. Number of PSEs detected by the Bootstrap scan test
Experiment
Digit Flexion Precision Grip Precision Grip 2 Wrist Grasp
Number of datasets N 18 67 57 212 1,705
Number of detections using the Bootstrap scan test, o« = 5% 16 51 18 60 65
Expected number of spurious detections if the data contain no PSE [0,3] [0,7] [0,6] [4,17] [67,103]

Number of postspike effects (PSEs) detected by the Bootstrap scan test at « = 5 and 95% confidence interval (aN * 2[a (1 — «)N]"?) for the number of

spurious detections we expect if the datasets contain no PSEs.

contains the numbers of PSEs with peaks in the [8,30] ms
postspike latency range detected by that test in the experimen-
tal datasets, at the significance level « = 5%, and Fig. 4
includes some examples. We did not apply the uncorrected
scan test or automated SpTA inspections because they have
lower power or uncontrollable spurious detections rate. Some
of the detections in Table 1 are undoubtedly spurious, since
statistical tests are designed to allow for a controlled number of
spurious detections, so they have power to detect real effects;
at the extreme, a test applied to N datasets that contain no effect
is expected to detect an average of aN significant effects by
chance, with 95% confidence interval [aN * 2/ a(1 — a)N].
However, some of the detections in Table 1 are undoubtedly
real PSEs because, in all but the Grasp experiment, the num-

PSEs detected

bers of detections exceed these intervals by large margins,
meaning that more effects were detected than by chance alone.
In the Grasp datasets, the number of detections is close to the
interval, which suggests that few or no PSEs exist or that the
test lacks power to detect them, possibly because the datasets
are small (700 to 5,000 spike triggers).

Next, we inspected visually the SpTAs of all datasets,
ignoring the scan test results to avoid biasing our judgment,
and cross-classified the PSEs discovered by both methods in
Table 2: the bootstrap scan test detected all the PSEs identified
visually, with five exceptions (row 3) that are all very narrow,
with PWHM <3 ms; they are shown in Fig. 4. We return to the
detection of narrow PSEs in the piscussioNn. We then reexam-
ined carefully all the SpTAs for which the bootstrap scan test

by scan test Digit Precision Precision Digit Precision
. . Flexion Grip Grip2 Flexion Grip
and first visual
inspection
Precision Wrist Wrist Wrist Wrist
X Grip2
PSEs missed
by first visual
inspection
Wrist Wrist Wrist Wrist Wrist
Wrist Wrist \_V‘!Q'siww Wrist Grasp g
Precision Wrist Wrist Wrist Grasp
. Grip2
PSEs missed

by scan test

&
i
£
s

Fig. 4. Experimental datasets SpTAs. The x-axis spans 30 ms pre- to 50 ms postspike trigger; the trigger is marked by a vertical line. The SpTAs are scaled
to fill the same vertical space. Bootstrap SpTA baselines and 95% bootstrap null confidence bands (Perel et al. 2014) are overlaid to aid visual PSE
detections. The vertical grey bands span the 10-ms detection windows where the scan test detected PSEs. Top: 5 of the PSEs that were identified both
visually and by the automatic tests. Middle: small PSEs that we did not identify visually but that were detected by the bootstrap corrected scan test. Bottom:
5 narrow PSEs that the scan test failed to detect.
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Table 2. Number of PSEs detected visually by the authors and
number of these detections that were and were not detected by the

scan test

Number of Detections/Misses
Number of SpTA visual detections 13 36 9 25 1
Number also detected by the scan test 13 36 8 22 0
Number missed by the scan test 0 0 1 3 1

Row 1 equals the sum of rows 2 and 3. The scan test missed 5 visually
identified PSEs, which are all very narrow; they are shown in Fig. 4.

detected significant effects, using in addition to visual inspec-
tions the SpTA bootstrap confidence bands of Perel et al.
(2014). We thus discovered 16 additional PSEs (Table 3, row
1) that we did not initially identify visually, either because their
shapes were not clear or the numbers of spike triggers were
small. They are shown in Fig. 4. Forty additional deviations
could also be PSEs (row 2), but their shapes are more ambig-
uous.

To summarize, the bootstrap scan test detected all PSEs that
were easily identified visually, with the exception of some very
narrow PSEs, and helped detect additional PSEs that we had
initially missed. Therefore, our recommended course of action
when there are many SpTAs to inspect is to run the scan test
first and examine only the SpTAs that are found to have
effects. Many of these SpTAs might nevertheless contain no
effect, since statistical tests allow a% spurious detections. If
one wishes to limit their number, a smaller significance level
could be used, or the false discovery rate (FDR) procedure of
Benjamini and Hochberg (1995) could be applied, whose
objective is to cap the expected proportion of spurious detec-
tions out of all the detections. This is detailed in ApPENDIX B.

DISCUSSION

Two analytical tools are available to detect PSEs: SpTA and
MFA/SSA. The former consists of visually inspecting the
SpTA for departures from its baseline and assessing their
significance using prior experience or the more formal proce-
dures suggested by Kasser and Cheney (1985) and Lemon et al.
(1986). The MFA/SSA is fully automated and relies on a P
value rather than subjective judgment to assess the statistical
significance of PSEs. However, MFA/SSA is designed to find
PSEs at a predetermined latency around 6-16 ms postspike
and cannot detect late PSEs, which includes monosynaptic
PSEs that appear at later latencies due to slow axonal velocities
of corticospinal neurons or spinal motoneurons, synchrony
effects and disynaptic suppression PSEs.

In this article, we proposed tests that have the same utility as
SpTA visual inspections, i.e., they can detect a wide range of
PSEs, but that are fully automatic and thus fast to apply to
many datasets. They rely on P values to assess PSE signifi-
cance; they do not depend on subjective judgment or prior
experience. We considered two kinds of automatic tests: auto-
mated versions of SpTA visual inspections and MFA/SSA scan
tests, which consist of performing the MFA/SSA in a sliding
detection window. We performed a large study to characterize
the statistical properties of these tests. We showed that auto-
mated SpTAs inspections do not control their rates of spurious
detections; they tend to be very conservative but can be
unexpectedly liberal. On the other hand, the scan tests maintain

their rates of spurious detections at or below the chosen
significance level «. Among these tests, the bootstrap corrected
scan test has the highest power. These properties are not
particularly important when sample sizes are so large that the
presence or absence of PSEs can be seen easily in the SpTAs.
However, in small datasets, or when PSEs are weak (small
excursion from baseline), the bootstrap scan test has higher
probability to detect them, and when a PSE is detected, we
know that it is spurious with probability is less than c.

We illustrated the application of these tests to 2,059 datasets
from 5 different experiments. We inspected all SpTAs visually
and detected 86 PSEs. The bootstrap scan test detected all but
five of them, all of which were very narrow with PWHM <3
ms. The scan test uses a fixed 10-ms wide sliding detection
window, and while it still has power to detect PSEs that are
narrower and wider than 10 ms, as in Fig. 3, C, F, and L, very
narrow PSEs are problematic. In future work, we will allow the
width of the scan test detection window to adapt automatically
to the dataset under investigation. The bootstrap scan test also
detected effects that we did not identify visually. We rein-
spected carefully the corresponding SpTAs and, relying in
addition on the SpTA bootstrap confidence bands of Perel et al.
(2014), we discovered 16 additional smaller PSEs that we had
previously missed or dismissed. Some Wrist datasets also
included stimulation triggers instead of spike triggers, which
the scan test detected and which we dismissed as PSEs after
inspecting their SpTAs.

Without the scan test, it was particularly difficult to inspect
the Grasp datasets, because they are many and most contain
<2,000 spike triggers, which is often too small to visually
identify PSEs unequivocally. The SpTAs failed to produce
clear shapes, and without an objective measure of significance,
we could only be confident that one dataset contained a PSE.
The bootstrap scan test failed to detect it because it was too
narrow. After examining again the SpTAs deemed significant
by the scan test, we identified another small PSE that we had
previously dismissed as background noise. It is very likely that
other PSEs exist. Indeed, we applied intracortical microstimu-
lations to 113 cortical neurons during the course of the exper-
iment and recorded stimulus triggered effects for 37 of them.
The scan test could not detect more effects either because the
datasets are too small, the effects too weak or too narrow, or
the EMG signal too noisy due to the type of EMG recording
electrodes we used: patches instead of intramuscular wires,
which record many more overlapping motor units. It would be
useful to determine, preexperiment, the number of samples to
collect to detect PSEs with high confidence.

Finally, the scan test does not replace visual inspections of
SpTAs. Rather, it is an automatic and efficient PSE detection
method that helps prescreen those data to look for candidate
PSEs, which can then be subject to further evaluation by SpTA

Table 3. Second inspection of the SpTAs found significant by the
scan test but not by the initial visual inspection

Number of Detections

Number of clear PSEs 0 1 1 13 1
Number of possible PSEs 1 9 6 16 8
Number of likely spurious detections 2 5 3 9 56

The sum of the three rows equals Table 1, row I minus Table 2, row 2.
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or other means. The scan test is useful when PSEs are small
and visual detection ambiguous; combined with the bootstrap
SpTA baseline and 95% confidence bands estimates of Perel et
al. (2014), it helped detect small PSEs that we had dismissed as
background variation. The scan test is also useful because large
datasets of neuron-EMG recordings are becoming increasingly
prevalent with the use of chronically implanted electrode
arrays.

APPENDIX A: SCAN TEST DETAILS

Parametric Distribution for the Scan Test

The scan test statistic, S in Eq.6, is the smallest of the L P values p(/)
of the MFA/SSA test in a sliding detection window. Small values of S
provide evidence of a PSE, so the scan test P value is the area in the left
tail of the null distribution of S: p...., = J5f.(s)ds. Under the null
hypothesis, the P values p(/) are uniform on [0,1], and when they are
independent, a standard probability calculation yields

fs(s) =L(1 =) se[0,1], )

so that [5f(s)ds = 1 — (1 — S)* (Eq. 5). Equations 5 and 7 are valid
under the assumption that the 7(/)s are standard normal and indepen-
dent. Perel et al. (2014) showed that the first assumption is typically
met and that the occasional deviations from standard normality are
small. The independence assumption is violated when the test is
scanned at close latencies. Questionable assumptions can bias P
values and in turn the rate of spurious detections of the test. It is
therefore important to adjust the test when needed.

Bootstrap Test and Diagnostics

We diagnose deviations from the assumptions by comparing the
assumed parametric null distribution of S (Eg. 7) to its bootstrap null
distribution using the QQ-plot described in METHODS. Figure Al shows
this QQ-plot for the scan test applied to a dataset at L = 104 postspike
latencies spaced b = 1 ms apart: the points clearly deviate from the line
with intercept 0 and slope 1, which means that the bootstrap and
theoretical null distributions of S do not match. Moreover, the points lie
above the line: the parametric distribution is shifted to the left of the
bootstrap distribution and implies that p,.,, (Eg. 5) is larger than it should
be, i.e., that the scan test is conservative. We need to either use a larger
step b to decrease the serial dependence between the scanned values, or
calculate a bootstrap P value. Figure A1B is the diagnostic QQ-plot when
we run the scan test with step b = 4 ms. The theoretical and bootstrap
quantiles of S now match better; the match becomes perfect when b = 8
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Fig. Al. Bootstrap diagnostic quantile-quantile (QQ) plot for the scan test. The
plot is pathological in A, when the test is scanned every b = 1 ms, which means
that the parametric P value (Eq. 5) is biased; a bootstrap P value should be
calculated, or the scan step b increased. The plot looks better in B, when the
test is scanned every b = 4 ms. The points overlay the line when b = 8 ms (not
shown), in which case the parametric P value can be trusted.

Table Al. Number of PSEs detected by the Bootstrap scan test
with a 20% false discovery rate and expected number of these
detections that are spurious

Experiment
Digit Precision  Precision
Flexion Grip Grip 2 Wrist  Grasp

Number of datasets N 18 67 57 212 1,705
Bootstrap scan test,

FDR = 20% 16 54 22 64 1
Expected number of

spurious detections [3] [11] (4] [13] (0]

FDR, false discovery rate.

ms (not shown): in this dataset, the parametric P value (Eq. 7) can be
trusted when b = 8 ms.

Instead of increasing b, we prefer to retain » = 1 ms and replace the
parametric P value by a nonparametric bootstrap P value:

. #st =S
pscan = R ’
where s, r = 1, ..., R, are bootstrap null values of S; p:m is the area

in the left tail of the bootstrap null distribution of S, since small values
of S provide evidence of a PSE. When the parametric assumptions of
the scan test are met, the parametric and bootstrap P values match
within simulation error. Calculating nonparametric bootstrap P values
requires a large bootstrap simulation. To avoid unnecessary simula-
tions, we recommend replacing p..., by p:m only when p.... €
[a,5a], since p,,, is biased upwards. We can also make due with a
relatively small bootstrap simulation, R = 500 say, because the
bootstrap null distribution of S is concentrated near zero, so its small
quantiles are relatively accurate. We must increase R if more accurate
P values are needed, for example if a small significance level is used.

APPENDIX B: FALSE DISCOVERY RATE TESTING

A test applied to a large number N of datasets will detect many
spurious effects: No on average when the N datasets contain no
effects, where « is the significance level. If one wishes to limit the
number of spurious detections, a smaller significance level could be
used, e.g., the Bonferroni corrected significance level a/N, which caps
at « the probability of detecting one or more spurious effects in N
SpTAs. This is a stringent criterion that renders tests exceedingly
conservative when N is large. Benjamini and Hochberg (1995) pro-
posed a conceptually different procedure, whose objective is to cap
the FDR, defined as the expected proportion of spurious detections out
of all the detections; for example, if the procedure applied with
FDR = 10% detects 90 PSEs, then 9 or fewer of these are spurious,
on average. Traditional testing controls the number of spurious de-
tections out of the total number of tests, which is a different criterion
entirely. Just as with traditional tests, choosing which FDR to use

Table A2. Number of PSEs detected visually by the authors and
number of these detections that were and were not detected by the

scan test

Number of Detections/Misses
Number of SpTA visual detections 13 36 9 25 1
Number also detected by the scan test 13 36 9 23 0
Number missed by the scan test 0 0 0 2 1

Row 1 equals the sum of rows 2 and 3.
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Table A3. Second inspection of the SpTAs found significant by
the scan test but not by the initial visual inspection

Number of Detections

Number of clear PSEs 0 1 1 11 0
Number of possible PSEs 1 9 8 18 0
Number of likely spurious detections 2 8 4 12 1

The sum of the three rows equals Table 1, row I minus Table 2, row 2.

involves a trade-off: lowering it to avoid spurious detections also
lowers the power to detect real effects, and vice versa.

To apply the FDR procedure, let p,,, n = 1,..., N denote the
ordered P values of the scan test applied to N datasets, with p;, being
the smallest and p, the largest. We then apply the usual test
sequentially with a dynamic significance level: we start with the
largest P value, p,, and compare it to the chosen FDR (we used
FDR = 20%); if p, = FDR, we stop the procedure and deem all N
tests significant. Otherwise, we compare the next largest P value, py — |,
to the significance level FDR-(N — 1)/N: if p,, _ |, = FDR-(N — 1)/N,
we stop the procedure and deem this test, and all the N — 2 tests with
smaller P values, significant. Otherwise, we continue until the test that
has the largest P value p, such that p,, = FDR-k/N; we stop the
procedure and reject the null hypothesis of no PSE for the test
performed last, and for all the tests that have smaller P values.
Ventura et al. (2004) has a useful pictorial representation of this
process. Note that when N = 1, the FDR procedure reduces to the
usual test with the significance level « = FDR.

Tables Al, A2, and A3 contain information similar to Tables 1-3.
Table Al reports the numbers of detections using the bootstrap scan
test with FDR = 20% and the expected number of these that are
spurious, i.e., 16:20% ~ 3 in the Digit Flexion experiment, 52-20% =~
10 in the Precision Grip experiment, and so on. The detections are
mostly the same as in Table 1 (bootstrap scan test, traditional spurious
detections rate control), except in the Grasp datasets, where FDR
testing detected just one PSE, vs. 65 using traditional testing, to satisfy
the guarantee of 20% spurious effects on average. The number of
expected spurious detections (Table Al, row 3) are close to their
suspected observed number (Table A3, row 3). Here and in general,
traditional and FDR testing will detect mostly the same effects, but
one should expect differences since the two procedures satisfy two
different criteria; experimentalists should choose which criterion they
care most about.
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