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INTRODUCTION

The seemingly effortless task of moving one's fingertip from
one location to another is actually quite complex when one
considers the underlying mechanisms that actuate the movements
of the shoulder, elbow, and wrist. Though the rekation between
cell activity in the motor cortex and resulting limb endpoint
movement is becoming quite well established (Gewrgopoulos er
al., 1986; 1988; Kettner ez al., 1988; Schwartz er ol 1988;
Schwartz, 1992), less is known about the intermediate actions
elicited by the central nervous systern and muscukoskeletal system
to create these movements. Once the cells of the motor contex
begin firing to signal a change in desired endpoint velocity, the
CNS presumably must decide on a course of actiom, factor in the
current limb configuration, its rate of change, and the state of
muscular activations, transmit control actions to change these
activations, and monitor the results -- all in the pediod of about
120 msec.

So how does the CNS accomplish this so efforthssly? In this
study, we examined whether a specific strategy — minimization
of muscular effort -- seemed to be in evidence and also whether
arm movements could be controlled by specifying endpoint
positions or velocities. Specifically, we examined this by
comparing joint trajectories obtained from animal
experimentation and computational modeling under three
conditions: [i] placement of the hand in the central location with
zero joint (angular) velocities; [ii] placement of the hand in a
central location with zero endpoint (linear) velocicy: [iii)
movement of the hand from the central location with the endpoint
velocity specified.

REVIEW AND THEORY

An even more basic problem must be solved even before the
aspect of movement is addressed. What is the strategy by which
the arm configuration is chosen to hold the limb emdpoint siarically
at the srarring position? Preparing for the anticipaged movement is
as important as the movement itself, because the imitial mass
configuration of the limb directly determines how the endpoint
will accelerate given the action of each individual musculotendon
force (Zajac and Gordon, 1989).

In this study, we present a new model of a monkey upper
extremity obtained through dissection and digitizarson of the
muscle-tendon pathways. We then present a novel way to
determine the initial static limb configuration via th2
pseudoinverse dynamic optimal control procedure (Yamaguchi et
al., 1995). In doing so, we hypothesize that the preferred initial
limb configuration to hold the limb endpoint statically in a single
location is chosen via a strategy of minimal efforc Finally, we
present one movement trial where the monkey mowes its hand
upward and leftward to a secondary target.

PROCEDURES

The torsos of two male rhesus monkeys. were issected and
digitized to obtain bone surface and musculotendoa path
geometries accurate to +/- 0.1 mm (Optotrak, Norchem Digital,
Inc., Waterloo, Ontario). SIMM software (Musculographics,
Inc., Chicago. IL) and a computer graphic workstzrion was used
to display the surface geometry and to further define the
musculotendon pathways. The equations of motioca for the
matching seven degree-of-freedom dynamic muscauloskeletal
model was developed and coded in FORTRAN using Kane's
method. Separate rigid bodies for the radius and uina were used
so that realistic pronation and supination could be achieved in the
modeled forelimb.

In the experimental procedure, infrared diode markers
(IREDs) were taped on the skin surface of a third rhesus monkey
of similar size and weight. Marker locations were chosen to
minimize underlying soft tissue and to maximize visibility to the

Optotrak cameras. The monkey was positioned in a primate
holding chair in front of a computer graphics display screen. It
viewed the screen via stereographic glasses (CrystalEyes,
Stereographics Corporation) so that the virtual targets (light
shaded spheres) appeared as full 3-D images (Fig. 1). Feedback
regarding its hand (right index metacarpal-phalangeal joint)
position was provided by displaying a second virtual sphere.

The monkey was trained to first match its hand position to a
central location in its workspace by bringing the “hand” sphere to
the initial “target” sphere. Once the two were held
approximately concentric for a short time interval, the initial
“target” sphere was instantaneously moved to the second location
upward and leftward of the starting position. The monkey then
moved its hand without constraint to match the virtual spheres in
the new location.

Optimization Procedures. Two optimization procedures were
tested. The first was used to zero the angular velocities of the
modeled limbs while holding the endpoint in the initial static
position (condition [i]). For this we used the pseudoinverse
algorithm which superposes and integrates joint angular
accelerations created by unit stress contractions of single muscles
to achieve the desired joint velocities while simultaneously
minimizing the criterion function of Crowninshield and Brand
(1981). Because there were an infinite number of static limb
configurations which could deliver the proper endpoint location,
thousands of possible joint angle combinations were generated
and tested to find the configuration which had the minimum cost
related to maximizing the endurance time of the task, C,

m
cC=,/Zc,
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j=1
where m is the number of muscles, and oj is the stress in muscle j
(j=1,..., m=36). Once the configuration of the model delivering a
small cost was identified, slight perturbations of each angle were
introduced to compute the change in C resulting from the
perturbations for i=l,..., n=7. If one or more of the gradients
0C/08; were negative, the process was repeated until all of the
gradients were positive.

The second optimization procedure involved a modification of
the first procedure to control the linear velocities of the hand
during both the static task and a movement from the initial position
to the new target location (conditions [ii] and [iii]). The endpoint
velocities obtained from the animal experiments were defined as
inputs to the model. The model attempted to match these by
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superposing and integrating the endpoint accelerations created by
unit stress contractions of each of the 36 muscles using a
pseudoinverse procedure. The outputs from the numerical
procedure were the joint trajectories, which were compared to
the experimental results.

RESULTS
Utilizing the first optimization method resulted in a good
prediction for the joint angles preferred by the monkey for the
initial static configuration (Fig. 2), except for angle 84 (wrist
ab/adduction). When the second optimization method was used to
zero limb endpoint linear accelerations in the initial stane
configuration, the pseudoinverse algorithm delivered solutions
that had lower cost but allowed the joints to move even though the
endpoint remained fixed in space.

Using the experimentally measured joint angles as an initial
configuration for the point-to-point movement, the second
optimization procedure delivered limb endpoints that were within
2 mm of the desired positions. Again, the joint angles were not
constrained in any way, yet the solution compared favorably in
five out of the seven angles. Angles 0, (shoulder ab/adduction)
and 8, from the simulation did not match the joint trajectories
utilized by the experimental animal (Fig. 3).

DISCUSSION

The first optimization method appears to predict the preferred
static configuration of the limbs very well. From these results it
would appear that a strategy of minimizing muscle energy
expenditure (the converse of maximizing the endurance time of
the task) is in evidence for the static problem. On the other hand,
the second optimization method did not predict either static or
dynamic joint configurations very well. This is not surprising
because the first method requires all seven joint velocities to be
specified in time, while the second method requires as inputs only
the three components of the endpoint velocity. What is rather
surprising is that the second method actually delivers reasonable
solutions for five out of the seven angles, even though reasonable
solutions might be expecied for only three. In succeeding work
we will examine the consequences of adding additional input
information.
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Figure 3. Error between experimental and numerical joint
angles. The tick mark on the left indicates an error of 10 deg.
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Figure 2. Histogram showing the preferred static arm configuration predicted by the model (black) as compared to four experimental
trials with a live monkey (white). Angles are listed in order from 8, (leftmost) to 8, (rightmost).



