Direct Cortical Representation of Drawing

Andrew B. Schwartz

How the intention to act results in movement is a fundamental guestion of brain organi-
zation. Recent work has shown that this operation involves the cooperative interaction of
large neuronal populations. A population vector methad, by transforming neuronal activity
io the spatial domain, was used to visualize the motor cortical representation of the hand's
rajectory made by rhesus monkeys as they drew spirals. Hand path was accurately
reflected by a series of population vectors calculated throughout the task. A psychophysical
rule relating speed to curvature, the “power law,” was found in this cortical representation.
The relative timing between each population vector and the corresponding portion of the
movement was variable, The population vectors only preceded the movemeant in a pre-
dictive manner in portions of the spiral where the radius of curvature was graater than 6
centimeters. These results show that the movement frajectory is an important determinant
of motor cortical activity and that this aspect of motar corical activity may contribute anby
to discrete portions of the drawing movement.

Dl:tccl:inj; a coherent sipnal that might
represent the control of behavioral output
from a system as complex as the central
nervous system (CMS) is a difficult tack,
Cells in many different brain structures
change their firing rates in relation to some
EEPECt DE movement. MUI[J[ COThex fﬂllﬁ-
change their rate of discharge in & way that
is dependent on the direction of movement
(1. Alrhcﬂ:gh each cell fires maximally for
movements made in a single “preferred
direcrion,” the relation between discharge
and direction is coarse because a given cell’s
dynamic range encompasses all movement
directions. The population wvector algo-
rithm, by combining the activity of many
cells, yvields g vecror sum of preferred direc-
tions weighted by each cell’s discharge rate
i2). This vector points in che direction of
the physical movement, has a length thar
comresponds to the movement speed, and
may also represent aspects of the intention
to move (3, 4.

The experiments in this report were
designed to investigate how movement gen-
eration operates within a behavioral task.
Drawing tasks were used because the trajec-
tory of the hand is constrained behaviorally
throughout the task. Moror cortical cell
ACEIVILY was r:wdr;d and a SeTIcs of Popu-
lation vecrors calculated at equal time in-
rervals as the figure was drawn. This set of
vectors is hypothesized o be a central
representation of the Agure to be drawn and
should have the same sparial and remporal
characteristics as the trajecrory of the hand.
Paychophysical studies have shown thar the
rare ar which a figure is drawn depends on
its shape, so that the hand slows in portions
of the figure with higher curvarure. Gener-
ally, as the arm mowves through space, its
speed is inversely related to the curvarure of
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its path, This relationship has been termed
the "4 power law" and itz more precise
relation is

Af) = kO

where A(r) is angular velociry and curvature is
i) (5, 8). This law and others defined
through psvchophysics describe rules thar are
thoughe to be *“invadane,” with the implica-
tion that these fearures are important o the
moter system. The presence of these laws in
the activity of different CHS structures can be
indicative of the route used to assemble the
motor control signal.

To exarine how the shape of drawing is
represented in the motor cortex, two mon-
keys were trained o make smoorh, graceful
movements on a touch-sensitive screem.
Single cells were recorded {(n = 349} from
the proximal arm area of the motor cortex.
After each cell potential was isolated, the
animal performed the “center-=out” rask
from a center position to one of eight
rargets spaced equally around a circle (6-cm
radius) so thar the cell's preferred direction
could be calculated (7). Spirals (7.5-cm
outside radius, 1.5-cm inside radius, three
cycles) were then drawn (8).

Meuronal population vectors caleulated
from single-unit activity (%) recorded dur-
ing the spiral task are hypothesized to
represent the hand's trajecrory. Spike darta
recorded for each cell were divided into
100 bins over the duration of the task. For
each bin starring from movement onset, a
population vector summed across all cells
was generated. Finger trajectory dara re-
corded as each neuron was studied were
normalized inte 100 values corresponding
to the spike bins and averaged across cells.
Popularion and tangenrial velocity vectors
are compared in Fig. 1A. The time series
start on the lefr and the origins are aligned
vertically. Although local shifting along
the time axiz would increase their corre-
spondence, the lengths and directions of
the population and movement vectors are
nearly identical. This finding supports pre-
vious sinusoid deawing results (4) and
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shows that a tme zeries of population
vectors can represent the rangential veloc
ity or trajectory of the movement.

To test the power law, curvature o the
¥ power was plotted as a function of
angular velocity (Fig. 1B) (10}, The rela-
tion was linear (r > 0.91) for both the
population and the movement vectors.
This shows that the kinematic-figural rela-
rion dicrated by the power law in humana is
also present in monkeys and thar it is
represented in motor cortical activiey.

To better visualize this TREjeChoTy TepreseT-
tation, the parhs represented by these vectors
were constructed. The movement and the
population vectors were connected tip-to-tail,

Fig. 2. Comparison of direction be- 4
weaen popudation and movement
vectors, (A) The poputation veclor
directions are represented with tha
dashed fine and the solid ne rep-
rasenis the moverment vecior di-
rections. The bin width was deter-
mined by taking the average dura-
tion of the task and dividing by tha
number of bins (29}, The average
duration of e outside-=in spiral
was 2485 ms and for the inside-

Direction {racians)
2 o8
T

resulting in the pathe shown in Fig. 1C.
Comparison to the actual path again confirms
the usefulness of the population vector algo-
rithm in generating an isomorphic represen-
tation of the trajectory.

These data can also be used tw berter
understand how the information represented
at the motor corex may be incorporated into
the movement. Magnitudes and directions of
both the movement and population vectors
changed continuowsly during the drawing of
each spiral. The directions of the population
VECINS arcvcnl,rs:i.rnﬂartn those of the velocity
vectors (Fig. 2A). However, there is 2 small
but consistent difference between the move-
ment and papulation vectors. At the begin-
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Fig. 3. Comparison of
the finger trajciary and
itz cortical representa-
tign in time and space.
The red path is formed
fromn  the population
vectors, the blue from
the mowvement vectors.
Time i represented
vertically and the other
two dimengions are the
horizontal and vartical
directions of tha draw-
Ing surface. The tme
axiz of the spiral an the
left 8 scaled in even
Incremants. The Lime
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increments of the right spiral are adjusted by A6, This results in a closer alignment of the red and
biue paths, especialty in the middie of the spiral whera the curvature is highest, This spiral was

dranam froen tha outsida-=in.
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ning of the outside-=>in spiral, the directions
of the population and movement vectors are
almost identical. As more of the spiral was
drawn, the time difference (distance berween
rraces along the abscissa) became greater. The
reverse effect is observed for the spiral drawn
from inside-=our.

This time difference, At, between corre-
sponding vectors was calculated by finding
the time value of the movement direction
that correspended to each population vec-
tor direction. A distinctive pattern be-
comes evident when curvature is plotted as
a function of At directly (Fig. 2B). For both
spirals, At beping to increase steeply at
ghout the same value of curvarure {0.16)
that is equivalent to a 6-cm radius. Below
this value, the time difference is small or
even negative. The finding that the popu-
latton vector direction occurs simultanecus-
Iy with or after movement in that direction
suggests that motor cortical activity does
not contribute to direction specification in
the straighter portions of the movement.
The ]Jﬂpu!ar'mn vectors nnly 'prcdict move-
ment direction for curves with radii of less
than 6 cm. When the curvature is in this
range, the population vector direction pre-
cedes that of the movement by 100 to 120
ms. When the curvature of the drawing
exceeds a threshold value, the motor corti-
cal representation leads the movement by a
large interval and may be causal in this
portion of the movement.

This temporal shift affeces the spattal rep-
resentarion of the motor conical prediction.
Each wecror’s magnirude can be thought of as
speed () and therefore a5 a combination of
space and time (Fig. 3). The helix on the left
is a comparisen of the newronal representation
(red) to the acrual (blue) cuside-=in spiral.
A the bottorm of the figure, the spiral is of low
curvature and the two paths are very similar.
Ar the top, however, this rime difference
leads 1w a distinct difference berween the
actual and neural trajectories. When At is
added to each bin along the time axis, the
match is berter in the region of higher curva-
ture, as represented in the helix on the right.

The newronal population vectors calcu-
lared during this task oheyed the power
law derived from psychophysical experi-
ments. Processing responsible for this re-
lation occurs before this information
leaves the motor cortex and suppests that
the motor cortex or structures that provide
afferents to it (or both) penerate this
kinematic relation. In contrast, the direc-
tions encoded by the motor cortex only
contribute to the drawing movement
when the path to be generated surpasses a
minimum curvature. This likely means
that the movement information generated
by other brain structures follows a route
that bypasses the motor cortex for
straighter portions of the movement.



These findings provide evidence thar ce-
rebral processing operates dynamically it a
distributed manner as in other vertebrate
and invertchrate motor syseems (110,

The finding that neurcns coarsely encode
a given parameter also supports a diseribured
organization. [ndividual newrons cannot accu-
rately encode individual parameters, and this
condition has generated population theories
in which many neurons participace simultane-
oushy. The resolution of the populaton code
is better than a comparable code composed of
individual nenrons with narrow, discrete wn-
ing. Coarse coding also makes it possble for a
cell o encode more than one parameter si-
raulraneousty. Thus, a given neuron can par-
ricipate in multiple populations representing
different parameters.
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Endothelial NOS and the Blockade of LTP by
NOS Inhibitors in Mice Lacking Neuronal NOS

Thomas J. O'Dell,* Paul L. Huang, Ted M. Dawson,
Jay L. Dinerman, Sclomon H. Snyder, Eric R. Kandel,t
Mark C. Fishman

Long-term potentiation (LTP) is a persistent increase in synaptic strength implicated in
certain forms of learning and meameory. In the CA1 region of the hippocampus, LTP is
thought to involve the release of one or more retrograde messengers from the postsyn-
aptic cell that act on the presynaptic terminal to enhance transmitler releasa. Ona
candidate retrograde messenger is the membrane-permeant gas nitric oxide (NO),
which in the brain is released after aclivation of the neuronal-specific NO synthase
isoform (nNOS). To assess the importance of NO in hippocampal synaptic plasticity, LTP
was examined in mice where the gene encoding nNOS was disrupted by gene targeting.
In NNOS™ mice, LTP induced by weak intensity tetanic stimulation was normal except
fior & slight reduction in comparison to that in wild-type mice and was blocked by NOS
inhibitors, just as it was in wild-type mice. Immunocytochemical studies indicate that in
the nNOS ™ mice as in wild-type mice, the endothelial form of MOS (eNOS) is expressed
in CA1 neurons. These findings suggest that eNOS, rather than nNOS, generates NO

within the postsynaptic cell during LTP.

Although the induction of LTE in the
CAl region of the hippocampus occurs
postsynaptically, presynaptic changes are
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thought o also contribute to the enhance-
ment of synaptic strength (1), Thus, LTP ar
these synapses requires the release of a
retrograde messenger that acts on the pre-
gynaptic terminals ro increase transmiteer
release (2). A likely candidate retrograde
messenger is N (3), a membrane-per-
meant gas generated by the enzyme NOS
(4). There are several isotorms of NOS that
fall into two major classes: (i) inducible
NS present in macrophages and (if) con-
stitutive Ca®*erepulated NOS, which in-
cludes two tsoforms, endothelial (eNOS)
and neuronal (nMNOS) (5).

A number of observarions are consistent
with the possibility that NO is a retrograde
messenger for LT and that it is generaced
by a constitucive Ca’*-regulared isoform,
presumably the neuronal isoform (3). Acu-



