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Extraction algorithms for cortical control of karm prosthetics
Andrew B Schwartz*t, Dawn M Taylort and Stephen | Helms Tillery*

Now that recordings of multiple, individual action potentials are
being made with chronic electrodes, it seems that previous
work showing simple encoding of movement parameters in
these spike trains can be used as a real-time control signal for
prosthetic arms. Efficient extraction algorithms can
compensate for the limited ensemble sample acquired with
this emerging technology.
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" Abbreviations

2D two-dimensional

3D three-dimensional
ANN artificial neural network
ML maximum likelihood

PDF probability-density function
PVA population vector algorithm
SOFMs self-organizing feature maps

Introduction

The will to move and how this desite is cartied out have
been major philosophical and scientific issues throughout
written history. During the past few decades, our ability to
examine cortical activity directly has enabled the covert
processes that precede Vo};gpnal movement to be investi-
gated scientifically. Now, as our understanding of these
processes has advanced, we can apply our new knowledge
to individuals who have the desire to move but cannot.
The field of neuroprosthetics embodies a migration from
basic to applied science.

Of current interest are methods to intercept and interpret
neural signals in an effort to generate control signals for
arm actuators. Extraction algorithms for motor control
operate on spike trains recorded from a population of
cortical units with the purpose of predicting arm trajectories.
These methods were developed mainly to model putative
brain mechanisms and recognize represented movement
parameters in intact primates. Accurate trajectories are
produced using current extraction algorithms in intact
subjects, with the idea that, if computationally efficient,
they will successfully generate robust signals for prosthetic
control in subjects who cannot mi e their arms.

To form the trajectory prediction, the desired movement
parameter is derived from a sarnple of firing rates. If, for
example, the chosen parameter is movement direction 9
we need to calculate an estimate of movement direction, 9,

given a sample of firing rates, a, from different cells.
Although the activity of a single cell does have some
predictive power, the single-unit relation to movement is too
coarse and populations of activity are needed to provide
the kind of speed and accuracy for control of prosthetic
devices. Here, we review different extraction algorithms
that might be useful for extracting control signals from a
population of simultaneously recorded single units.

Linear methods

Modulation in motor cortical neuron firing rate often has
an almost linear relationship to movement kinematics.
Therefore, linear equations are commonly used to describe
expected cell behavior.

Population vector algorithm

Restating and generalizing the original directional findings
of Georgopolous ¢z a/. [1,2] to three dimensions leads to the
following linear equation for a single cell (Figure 1):

—by=bym, +bm + bym, 1)

where D is the cell’s discharge rate, &, is its mean discharge
rate, my, my and m, are the x, y and ¥ components of a unit
vector pomtmg in the direction of movement, and 4,, &,
and 4, are regression coefficients. This is equivalent to thc
dot product expression:

"BM = bm, + bym, + bn,, 2

where B can be conceptualized as a vector pointing in
the cell’s preferred direction, that is, the direction where the
cell fires maximally. The magnitude of B is equal to
the cell’s maximum increase in discharge rate above the
mean. M is a unit vector in the movement direction
(consisting of m,, m, and m,). This linear relation can also
be expressed in terms of a cosine-tuning equation:

IBl IMI| cos@ 3)

where 8 is defined as the angle between the preferred and
movement directions. This is a wide tuning function with
one central peak [3]. An example of this function is shown
in Figure 2a. Although these equations describe single-cell
activity during movement, they are too ambiguous and
coarse for accurate predictions of movement velocity.

The cosine tuning function is wide, encompassing all
movement directions. Recent, more detailed, experiments
[4] show, however, that these tuning functions may be
more narrow than the cosine function. Nonetheless, the
peak of the tuning function is used to catgorize each cell’s
contribution to the ensemble’s movement representation
in the population vector algorithm (PVA). The ith contri-
bution, G;, to the population output is represented as a unit
vector pointing in its preferred direction, and weighted by
some function of its firing rate, @, = (D). Several different
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weighting formulae have been explored [5]. The weighted
cell vectors are then summed across all cells to form the
population vector, P, which points in the predlcted
direction of movement.

P=ZC,~.Wi
i

If the cells are truly cosine-tuned and their preferred
directions are uniformly distributed, then performance of the
PVA is equivalent to a maximum likelihood (ML) estima-
tion ([6]; and see below) under uniform variance conditions.
As long as the cells have radially symmetric tuning functions,
the expected value of the PVA will still be accurate given a
set of uniform preferred directions [5]. But the uniformity
constraint is seldom met, and the quality of tuning can vary
greatly with a small sample of unit recordings.

“4)

Under these conditions, several measures ¢an be taken to
improve the PVA further, For example, each unit’s contribu-
tion to P can be scaled by some measure of its quality of
tuning (such as using B from Equation 2 above instead of the
unit vector G). A non-uniform distribution of tuning direc-
tions can be addressed by normalizing the magnitude of each
component of P. If the cells are truly cosine-tuned, this is
easily done by dividing the p,, by and p, values respectively
by the magnitudes of ¢,, ¢, and ¢, (or of 4,, 4, and 4,) summed
across all cells. Compensatlon for non-uniform preferred
direetions, and for the PVA dependence of symmetrical
tuning functions is a benefit of the Optimal Linear Estimator
developed by Salinas and Abbott [7]. Instead of defining a
cell’s preferred direction as the peak of a cosine function,
the tuning function’s center of mass is used. Each cell’s
contribution to the population vector is weighted by its lack
of correlation with the tuning functions of the other contrib-
utors, effectively correcting for non-uniformities.

Optimal linear filters

The PVA has been used to predlct two-dimensional (2D) and
three dimensional (3D) reach direction by applying it to the
mean activity of the cell during each movement. It has also
been used to generate trajectories during reaching and
drawing [8-11]; by dividing the cell activity into bins and
calculating a population vector for each bin. A weakness of
PVA is that it does not take full advantage of the temporal
characteristics of motor cortical discharge. Optimal linear
filters make use of these characteristics to predict specific
trajectories from parallel time series of cell activity ([12°];
and L Paninski, M Fellows, NG Hatsopoulos, JP Donoghue,
personal communication). An optimal linear filter has the
general form:

Tlm/dt ¢
>
i=0  j=1

a;N(t +idtf) (5)

where P is the predicted parameter at time ¢4 dz is a
negative interval, i iterates back in time to Tpre, ais a fitted
coefficient and N is the firing rate for cell 7 at time # + 7-dz.
This method is especially useful for fitting data in which

there is a significant lag between the discharge rate and P.
It is also clear that there is information, useful for making
the prediction, present in the spike train for a significant
interval before time ¢ in the movement. A separate
coefficient is regressed for each lag and cell. In the procedure
used by Wessberg ez 2/. [12°*], position along a 3D trajectory
was predicted by finding a separate coefficient for each
dimension, lag and cell.

Other methods :

One limitation of linear filter methods is that they rely on
an @ priori model of the movement-related neuronal
responses. Deviations from the model will occur if
unaccounted sources of spike modulation are significant.
These extra sources of variance may be consistently
related to the movement and thereby carry predictive
information. The remaining methods make no prior
assumptions about discharge-movement relations beyond
the selection of an output parameter space.

Maximum likelihood estimation

Using a chronic recording technique, we recorded a motor
cortical unit as a monkey moved to eight targets from the
middle of a cube to its eight corners [13]. The movement-
aligned histograms are shown in Figure 1, and these firing
rates when plotted against movement direction could be
fitted to a cosine function. Statistically, the tuning relation
can be considered as a likelihood function. This function
gives the probability of discharge rate, «, for each move-
ment direction, 8, f (2l0). The ML estimate is the 8 that
maximizes the probability of observing the rate @. The
tuning function shown in Figure 2b is a 2D projection of
the more general 3D condition shown in Figure 2a and
provides a straightforward means of explaining the ML
method. Taking a single firing rate, 4, on the ordinate, we
can go across the figure, counting directions corresponding
to each sample of this discharge rate. We then divide each
of these observations by the total number of samples in the
observed direction to get P(2l6).

For illustration, this was performed in three activity bands
— low, medium and high rates — instead of using individ-
ual firing rates. The three panels of Figure 2c show that
movement directions 180° away from the preferred direc-
tion are likely to occur when the firing rate is low, a wide
range of directions within 135° of the preferred direction
are likely for moderate rates, and movements near the
cell’s preferred direction are most probable for high rates.

What we really want for prediction is P(8l@). This can be
generated either indirectly by the ‘forward’ process used in
Figure 2¢ or directly by calculating the percentage of
movement directions that occur for each firing rate. This
was done, preserving the 3D information embedded in the
data, in Figure 3. Firing rates were again divided into three
ranges and a probability-density function (PDF) surface
constructed in polar coordinates. The directions of each
target are shown by the numbered circles.

)
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Figure 1

Discharge profiles of a unit recorded during a
3D center-out task. The workspace consisted
of a cube with targets at each of the eight
corners. Each movement began in the center
of the cube and ended at one of the corner
targets. Histograms are arranged by target
location. The middle four histograms
correspond to the distal, far face of the cube,
and the outer four to the proximal, near face.
The unit was recorded with a chronic
technique and the data consisted of

490 repetitions to each of the eight targets.
The cell’s preferred direction points between
targets 1 and 5.
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For low rates it can be seen that movements toward targets
6, 7 and 8 are the ‘winners,” with target 8 (near, up and to
the right) being the most likely. This is the target that is
most nearly opposite the preferred direction and corre-
sponds to the histogram with the lowest rate in Figure 1.
For middle firing rates, targets 3, 4, 6 and 7 are the winners.
Movements near targets 3 and 7 (up and to the left) are the
more likely. Finally, the surface shows peaks near targets 1,
2, 3, 5 and 6 for the highest rates, with the most likely
direction between targets 1 and 5 (down and to the left).
This corresponds to the preferred direction.

The forward method shown in Figure 2 has the advantage
that the PDF can be fitted with a basis function that is
usually cosine-like [14], allowing estimates of poorly sampled
directions to be made. This is shown, for instance, by the data
gap around the preferred direction in Figure 2b. Technically,
either conditional probability can be derived from the other
using Bayes Theorem, if P(0) and P(z) are known.

For accurate prediction, the PDFs of individual neurons,
such as those illustrated for the above unit, must be com-
bined with those of other units recorded simultaneously to
form a joint probability distribution, P(@la). If the firing
rates were independent, the PDFs for each unit could be
multiplied together to get the joint probability [15].
Ideally, this method would work by calculating P(6lz)
for every activity level for each cell to form a ‘dictionary’.
Then when a novel a is sampled, the individual firing rates
would be used as an index to each PDF in the dictionary.

The selected PDFs would then be multiplied and the
maximum of the resulting joint probability taken as

the most likely movement direction for the population.

Theory suggests that the ML, method might be optimal in
terms of extracted information [16,17]. One factor deter-
mining the utility of this method is whether PDFs can be
combined together to form the joint probability distribution
for the population. If, for example, the firing rates were
independent, then the individual PDFs could be multi-
plied together. However, correlations between spike trains
from different neurons may occur [18,19], and these can
change the movement-related information. This should be
taken into account when forming the ensemble estimate.

Pattern recognition

A snapshot of firing rates across a population can be
considered a pattern. If the variation in this pattern is distinct
with changes in movement parameters, pattern recognition
algorithms can be used for parameter extraction. For prac-
tical applications, this requires an algorithm that is efficient
or that can express pattern variation with a minimal
number of factors. By taking advantage of co-variation
between pattern elements, principal components analysis
produces factors representing maximum and independent
proportions of variance in a data set [20,21] to reduce the
complexity of the pattern.

As an extension of the snapshot analogy, information about
each parameter can be found in the activity that takes
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Figure 2
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Direction—activity relationship. (a) The 3D tuning function for the unit
shown in Figure 1 is plotted in Cartesian space. This was calculated
using Equation 1 in a multiple regression: by = 47.2, by, yarg = 15.6,
by =-22.6, bg;y = —13.0. The axes are in units of spikes/s. The
distance from the origin to the edge of the volume gives the predicted
discharge rate in the chosen movement direction. The preferred
direction is indicated by the line through the tuning volume pointing
downward and to the left (as the monkey would view the workspace).
The preferred direction is between targets 1 and 5. (b) Plot of
discharge rate against the angle between the movement and preferred
direction, 8. Movement direction and discharge rate were calculated
about every 48 ms for all data, resulting in 39,191 samples shown
here as dots for the unit illustrated in the previous figures. The smooth
line is the rate predicted by the cosine function in Equation 3. The
jagged line is the mean activity for each value of 8, E(a|6). Few
movements were made within 20° of the preferred direction resulting in
a data gap for these directions. (c) The firing rates were divided into
three ranges (1-30, 31-90 and 91-130 spikes/s and the probability
of having a rate in this range, given 6 calculated by counting the
instances of that firing rate in each direction and dividing by the total
number of movements in that direction.

place before the parameter changes; a sequence of pattern
snapshots carries more information than a single snapshot.
This is true of single-cell activity patterns where, for
example, the shape as well as the height of the peri-event
histogram is related to target direction (Figure 1).

T'his was the motivation for the technique developed by
Isaacs ef /. [22°]. Activity windows consisting of 200 ms of
firing rates from each of N neurons in a simultaneously
recorded population were placed in a dara rable. The
window consisted of 10 bins and the firing rates for each
bin of the window were placed down the column of the
table. Simultaneous windows from each unit were concate-
nated so that each column comprised N x 10 firing rates.
Each subsequent column consisted of windows that had
been shifted by one bin from those of the previous column.
Rows of the table were ordered sequences of firing rates
from a single cell. These rows were treated as vectors and
placed in a correlation matrix from which eigenvectors
and eigenvalues were calculated. The eigenvectors were
multiplied by each column of the data matrix to give a
dictionary of principal components.

This extraction algorithm worked by taking 200 ms of
novel ensemble data, multiplying by the eigenvectors and
then comparing these with the dictionary of principal
components. The closest martch identified a column in
the data matrix corresponding to a particular window and
movement vector associated with it. This analysis can be
quite efficient; for example, eight principal components
accounted for more than 90% of the variance in a data table
consisting of 240 rows.

Neural networks

Artificial neural network (ANN) solutions can optimize
each cell’s contribution to the population prediction.
Approaches ranging from self-organizing feature maps
(SOFMs) to complex nonlinear recursive networks have
been used as a means of mapping movement parameters to
activity patterns.

SOFMs [23] are generally constructed as a single laver of
nodes, each of which is initialized with a random vector of
n weights, where # is the dimensionality of the input. The
SOFM is tuned by comparing an input vector to the
weight vector for each node. In a ‘winner takes all’ scheme,
the node with the weight vector closest to the input gets its
weights modified to be slightly closer to the input. Over
training, separate input classes come to be selected by
different nodes in the SOFM.

An SOFM has been used to construct arm trajectories from
neural data [24]. In this analysis, the SOFM comprised
20 x 20 nodes. Input vectors were constructed from arrays
of firing rates recorded across the ensemble. After training
on a set of neural data, the SOFM was organized into
an output topography, in which neighboring nodes corre-
sponded to inputs of similar firing patterns. Trained with
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Figure 3

Probability of movement in direction @ given
a firing rate. Firing rate and 3D movement
direction were calculated in intervals
consisting of 24 ms (78,400 samples) as
the arm moved during each trial.
Movement direction was calculated as the
difference between hand position at the
start and end of movement. These were
used to calculate PDFs for movement
direction across each sample. The number
of times a movement direction occurred in
association with a given discharge rate
was divided by the number of times that
rate occurred, yielding P(8|a), the
probability of movement direction given a
discharge rate. In this analysis, the firing
rate ranged from 1 to 282 spikes/s. For
display, the data were partitioned equally

High —

Medium —

Low

into groups of low, medium and high
discharge rate. The 3D directions were
converted into polar coordinates and are
represented here as azimuth (0° to the right,
positive counterclockwise viewed from

Azimuth (°)

above) on the horizontal axis and elevation
(0° up) on the forward axis. The PDFs are
shown here as three contour plots, arranged
with the lowest firing rate category on the

bottom and the highest group of rates on
top. The colors correspond to the probability
of a particular direction of movement

occurring. Numbered circles are the target
locations with the same labels as those
used in Figure 1.

data from motor cortical cells (20 ms bins) that were
recorded as a monkey performed center-out and spiral
drawing, this algorithm produced clusters that corresponded
to movement directions. Clusters with similar directions
were next to each other, so that the output layer organiza-
tion reflected the target locations in the center-out task
and formed a spiral in the drawing task. This representa-
tion of the parameter space is referred to as the
‘topology-preserving’ property of the SOFM. In short, the
SOFM classifies firing patterns according to their similari-
ties, resulting in clusters that can then be examined for
their relationship to specific behavioral variables.

A three-layer ANN based loosely on physiological connec-
tivity has been used to generate isometric forces from
mortor cortical spike trains [25]. The output consisted of six
muscles acting as simple arm actuators in a 2D shoul-
der—elbow model. Connection weights of the four-element
middle layer were adjusted so that spike trains recorded as
a monkey performed an isometric task produced a force in
the model that matched that of the monkey.

Another ANN has been used by Wessberg er /. [12°] to
control a robot arm using neural signals from a monkey’s
cercbral cortex. In this work, *hand position’ was the control
variable assumed to be represented in the cortical activity.
The ANN had a single hidden layer consisting of
15-20 units and used gradient-descent back-propagation
for offline training. The three Cartesian dimensions were
considered to be independent, and each had a separate out-
put layer. Once trained, the network was used to predict

hand position from ensemble discharge. This is an example
of a classifier scheme used, in this case, to map neural input
partterns to hand position.

A recurrent network using nonlinear excitation functions
has been designed to act as an ML estimator and has
produced a similar performance [6]. Inputs were ordered
by preferred direction, and all 64 elements in the input
vector had the same tuning function, but the tuning
directions were separated by 6°. The input projected to an
output layer that was also one-dimensional, with elements
ordered by preferred direction. Finally, the output layer
was fully interconnected. Connection weights were fixed
and set so that nearest neighbors shared excitation. The
excitatory weights decreased as the difference in pre-
ferred directions increased so that more distant weights
became inhibitory.

The algorithm began with a transient input to the output
layer. Activity in the output layer was then iterated five or
six times until activity across the output vector formed a
stable, unimodal hill with a distinct peak near a particular
output element. The preferred direction of this element
was taken as the most likely movement direction. This
nerwork is not adaptive because the weights are not adjust-
ed with a learning rule — instead, the outpur layer filters
the noisy input pattern. The nonlinear activation function
of the output units effectively removes Gaussian noise
from the input, fitting a hill to the population of activity
from the input. On the basis of simulations, this network’s
performance approached that of ML estimation.
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Conclusions

Extraction algorithms for motor prostheses are designed to
recognize motor parameters embedded in neural activity.
Optimal algorithms will extract all the available information
about a specified parameter in the recorded population
activity. For engineering applications, it is essential that the
parameters specified are well represented in the neural
structure from which the activity is being recorded. For
example, several of the algorithms discussed here are based
on the position of the moving limb but, in primary motor
cortex at least, this parameter is more poorly represented
than velocity during movement [24-26). The idea of several
sources of variance, which is used in statistics, is relevant to
this issue. A neuron’s modulation can be related to many
parameters, with some parameters accounting for more
of the modulation (variability) than others. If parameters
are correlated, then they share a source of variability.
Parameters that account for a larger percentage of the spike
train variance can be more easily extracted with population
algorithms than those with weaker representations. With
most algorithms, the different sources of variability need
to be specified explicitly because some sort of optimal
function is being modeled to the cell response.

The SOFM is partially immune to this problem as it clusters
its output nodes only on the basis of the similarity of its input
firing patterns (but these still must be labeled after the net-
work is tuned). Also, the PVA — perhaps because it relies on
the actual firing rates of neurons — is robust in this respect as
it can handle simultaneously at least two parameters, direc-
tion and speed [29], even though speed is weakly encoded in
the activity of single cells. Two factors — a uniform parame-
ter distribution and unimodal tuning functions — are almost
universal in determining the success of all these algorithms. It
might seem that the pattern recognizers would be spared
from these limitations. Even in these approaches, however,
non-uniform clustering in the parameter space makes random
noise more damaging. Multi-modal tuning functions make it
less likely that a clear winner can be found in ML methods.
Of course, all extraction methods are limited by the range and
type of variation in the input spike trains.

Correlation within and between parameters is a factor that
has not been fully exploited as yet in decoding algorithms.
For example, it is unlikely, within a time series of firing
rates from a single cell during a movement, that rates
adjacent in time are uncorrelated. Instead, these rates vary
smoothly. The time-dependent coefficients in the optimal
linear filters use this in an indirect way. It is well known
that many movement parameters, such as intrinsic and
extrinsic parameters of the arm, co-vary [13,30,31].
Knowledge of these relationships can make the extraction
algorithms more efficient, by limiting possible outcomes
using the same principles as fuzzy logic controllers [32].

"The present set of extraction methods falls into three over-

lapping categories. ‘Pattern recognition’ can be done either
explicitly, or more indirectly with ANNs and ML methods.

The performance of these techniques is constrained by
their training sets and may be limited, both in terms of
extrapolation beyond and interpolation within the training
set when novel data are applied. The success of the ‘linear
filters’ is due to the underlying linearity of the relationship
between firing rate and movement direction. Again, these
filters are limited by the conditions used to fit their coeffi-
cients and may suffer from the same training constraints as
ANNSs. An advantage of the optimal filters is that they can
account for time lags between spike and movement data, if
these lags are stationary. The ‘population vector algorithm’
has the advantage of being independent of its exact basis
function; it has been shown to be robust across tasks and
can encode several parameters simultaneously. The PVA
can be modified so that, like the other methods, single-cell
contributions are weighted to give an optimal prediction.
However, this method is probably the most sensitive to
non-uniformities in the preferred direction distribution.

As neuroprosthetics advance, other performance factors
will become important. For instance, now that animals are
learning to use devices that provide feedback of their
performance, the ability of the subject to modify neuronal
activity patterns to fit better the constraints of the
extraction algorithm, and the development of adaptive
algorithms that modify these constraints can enhance the
target accuracy in a reaching task [33]. Our ability to study
these learning dynamics is an exciting development both
in the science and in the engineering of neural systems.

Acknowledgements
Our work is supported by the Neurosciences Research Foundation and an
NIH contract (N01-NS-9-2321).

References and recommended reading
Papers of particular interest, published within the annual period of review,
have been highlighted as:

* of special interest
*¢of outstanding interest

1. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT: On the
relations between the direction of two-dimensional arm
movements and cell discharge in primate motor cortex. / Neurosci
1982, 2:1527-1537.

2. Georgopoulos AP, Caminiti R, Kalaska JF, Massey IT: Spatial coding
of movement: a hypothesis concerning the coding of movement
direction by motor cortical populations. Exp Brain Res 1983,
Suppl 7:327-336.

8. Schwartz AB, Ketiner RE, Georgopoulos AP: Primate motor cortex
and free arm movements to visual targets in three-dimensional
space. |. Relations between single cell discharge and direction of
movement. J Neurosci 1988, 8:2913-2927.

4. Amirkian B, Georgopoulos AP: Directional tuning profiles of motor
cortical cells. Neurosci Res 2000, 36:73-79.

5. Georgopoulos AP, Kettner RE, Schwartz AB: Primate motor cortex
and free arm movements to visual targets in three-dimensional
space. ll. Coding of the direction of movement by a neuronal
population. J Neurosci 1988, 8:2928-2937,

6.  Pouget A, Zhang K, Deneve S, Latham PE: Statistically efficient
estimation using population coding. Neural Comput 1998,
10:373-401,

Salinas E, Abbott LF: Vector reconstruction from firing rates.
J Comp Neurosci 1994, 1:89-107.



10.

11.

Extraction algorithms for cortical control of arm prosthetics Schwartz, Taylor and Helms Tillery 707

Schwartz AB: Motor cortical activity during drawing movements:
population response during sinusoid tracing. J Neurophysiol 1993,
70:28-36.

Schwartz AB: Direct cortical representation of drawing. Science
1994, 265:540-542.

Moran DW, Schwartz AB: Motor cortical activity during drawing
movements: population representation during spiral tracing.
J Neurophysiol 1999, 82:2693-2704.

Schwartz AB, Moran DW: Motor cortical activity during drawing
movements: population representation during lemniscate tracing.
J Neurophysiol 1999, 82:2705-2718.

Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M,
Chapin JK, Kim J, Biggs 8J, Srinivasan MA, Nicolelis MA: Real-time
prediction of hand trajectory by ensembles of cortical neurons in
primates. Nature 2000, 408:361-365.

This paper shows that, in single trials in real time, ensemble activity can
encode arm trajectory. As the monkey subjects have no knowledge of their
extracted signal, this is an example of open-loop control.

13.

17.

18,

19,

Reina GA, Moran DW, Schwartz AB: On the relationship between
joint angular velocity and motor cortical discharge during
reaching. J Neurophysiol 2001, 85:2576-2589.

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W: Spikes
Exploring the Neural Code. Cambridge, MA: MIT Press; 1997.

Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA: A statistical
paradigm for neural spike train decoding applied to position
prediction from ensemble firing patterns of rat hippocampal place
cells. J Neurosci 1998, 18:7411-7425.

Paradiso MA: A theory of the use of visual orientation information
which exploits the columnar structure of striate cortex. Bio/
Cybern 1988, 58:35-49.

Seung HS, Sompolinsky H: Simple models for reading neuronal
population codes. Proc Natl Acad Sci USA 1993, 90:10749-10753.

Lee D, Port NL, Kruse W, Georgopoulos AP: Variability and
correlated noise in the discharge of neurons in motor and parietal
areas of the primate cortex. J Neurosci 1998, 18:1161-1170.

Maynard EM, Hatsopoulos NG, Ojakangas CL, Acuna BD, Sanes JN;
Normann RA, Donoghue JP: Neural interactions improve cortical
population coding of movement direction. J Neurosci 1999,
19:8083-8093.

s

20.

21,

22.

Glaser EM, Ruchkin DS: Principles of Neurobiological Signal
Analysis. London: Academic Press; 1976.

Gorsuch RL: Factor Analysis, edn 2. Hillsdale, New Jersey: Lawrence
Erlbaum and Associates; 1983.

Isaacs RE, Weber DJ, Schwartz AB: Work toward real-time control
of a cortical neural prosthesis. /EEE Trans Rehabil Eng 2000,
8:196-198.

The first demonstration of single-trial, open-loop arm trajectory extraction.

23.
24,

25,

26.

27

28,

29.

30.

31,

32.

33.

Kohonen T: Cortical maps. Nature 1990, 346:24.

Lin S, Si J, Schwartz AB: Self-organization of firing activities in
monkey’s motor cortex: trajectory computation from spike
signals. Neural Comput 1997, 9:607-621.

Lukashin A, Amirikian BR, Georgopouios AP: A simulated actuator
driven by motor cortical signals. Neuroreport 1996, 7:2697-2601.

Kettner RE, Schwartz AB, Georgopoulos AP: Primate motor cortex
and free arm movements to visual targets in three-dimensional
space. lll. Positional gradients and population coding of
movement direction from various movement origins. J Neurosci
1988, 8:2938-2947.

Fu QG, Flament D, Coltz JD, Ebner TJ: Temporal encoding of
movement kinematics in the discharge of primate primary motor
and premotor neurons. J Neurophysiol 1995, 73:836-854.

Ashe J, Georgopoulos AP: Movement parameters and neural
activity in motor cortex and area 5. Cereb Cortex 1994, 6:580-600,

Moran DW, Schwartz AB: Motor cortical representation of speed
and direction during reaching. J Neurophysiol 1999, 82:2676-2692.

Soechting JF, Flanders M: Moving in three-dimensional space:
frames of reference, vectors, and coordinate systems. Annu Rev

. Neurosci 1992.

Helms Tillery S, Ebner TJ, Soechting JF: Task dependence of
primate arm postures. Exp Brain Res 1995, 104:1-11.

Wang QJ, He J: Fuzzy control of postural stability under large
perturbations. /nternational Federation of Automatic Control 1999,
313-334.

Taylor DM, Schwartz AB: Using virtual reality to test the feasibility
of controlling an upper limb FES system directly from multiunit
activity in the motor cortex. In Proceedings of the 6th Annual IFESS
Conference: 2001 June 16-20; Cleveland. 2001:132-134.



