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Single-unit activity in area M1 was recorded in awake, behaving
monkeys during a three-dimensional (3D) reaching task performed in
a virtual reality environment. This study compares motor cortical
discharge rate to both the hand’s velocity and the arm’s joint angular
velocities. Hand velocity is considered a parameter of extrinsic space
because it is measured in the Cartesian coordinate system of the
monkey’s workspace. Joint angular velocity is considered a parameter
of intrinsic space because it is measured relative to adjacent arm/body
segments. In the initial analysis, velocity was measured as the differ-
ence in hand position or joint posture between the beginning and
ending of the reach. Cortical discharge rate was taken as the mean
activity between these two times. This discharge rate was compared
through a regression analysis to either an extrinsic-coordinate model
based on the three components of hand velocity or to an intrinsic-
coordinate model based on seven joint angular velocities. The model
showed that velocities about four degrees-of-freedom (elbow flexion/
extension, shoulder flexion/extension, shoulder internal/external rota-
tion, and shoulder adduction/abduction) were those best represented in
the sampled population of recorded activity. Patterns of activity re-
corded across the cortical population at each point in time throughout
the task were used in a second analysis to predict the temporal profiles
of joint angular velocity and hand velocity. The population of cortical
units from area M1 matched the hand velocity and three of the four
major joint angular velocities. However, shoulder adduction/abduc-
tion could not be predicted even though individual cells showed good
correlation to movement on this axis. This was also the only major
degree-of-freedom not well correlated to hand velocity, suggesting
that the other apparent relations between joint angular velocity and
neuronal activity may be due to intrinsic-extrinsic correlations inher-
ent in reaching movements.

I N T R O D U C T I O N

Movement coordinate transformations

The sensorimotor planning of a reaching movement is com-
monly described by two successive transformations (Flanders
et al. 1992): a target in extrinsic space (i.e., visual) is trans-
formed by an extrinsic-to-intrinsic coordinate frame (joint an-
gles, muscle lengths) followed by a kinematic-to-dynamic co-
ordinate frame (joint torques, muscle forces). Our previous
work in two dimensions has shown that cortical unit popula-
tions in primary motor cortex (M1) encode the hand’s velocity

in extrinsic parameters (Moran and Schwartz 1999a). In this
paper, we compare the relation between cortical activity in M1
and both the extrinsic (hand velocity) and intrinsic (joint an-
gular velocity) parameters of the arm during natural reaching in
three dimensions.

Neurophysiological experiments

Beginning with Jackson (1889), locationist concepts have
evolved from somatotopic cortical maps to single structure/
single coordinate frame hierarchies (Kalaska and Crammond
1992). In such a scheme the motor cortex is generally consid-
ered as the cortical output of motor signals, operating as the
gateway to the “final common pathway” for muscles (Asanuma
and Rosen 1972; Evarts 1968). As such, activity in M1 should
be correlated with intrinsic and/or dynamic coordinates, rather
than more abstract reference frames, such as extrinsic space.
Following a series of experiments with single-joint, single
degree-of-freedom (DOF) movements (Evarts 1968; Hum-
phrey et al. 1970; Schmidt et al. 1975), Murphy and colleagues
(1982) attempted to correlate joint angular position (intrinsic
coordinates) with neural activity in a multi-jointed, reaching
task. They found that1) there was no simple relationship
between the neural activity and the electromyogram (EMG);2)
neuronal activity related to the shoulder joint was similar to
neuronal activity related to the elbow joints even though mo-
tion about those joints could be quite different; and3) the
discharge of the shoulder-related neurons seemed to vary sys-
tematically with the trajectory.

More recent experiments have shown that several cortical
motor areas project to the spinal motor centers (Martino and
Strick 1987), and paradigms using natural arm movements
(Georgopoulos et al. 1982; Schwartz et al. 1988) have con-
cluded that motor cortical activity is related well to the direc-
tion of the hand in space (extrinsic coordinates). Other exper-
iments show that motor cortical activity can even be related to
nonmotor aspects of the task (Carpenter et al. 1999; Georgo-
poulos et al. 1989, 1992). The specific function of the primary
motor cortex is still controversial and has been the goal of
several studies that have attempted to categorize motor cortical
activity to a specific place in the hierarchical set of transfor-
mations from vision to muscle activation (Evarts 1968; Hum-
phrey 1986; Kakei et al. 1999; Kalaska and Crammond 1992).
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The question of whether motor cortical activity is represen-
tative of intrinsic or extrinsic coordinates is one aspect of this
hierarchical scheme. While the work of Georgopoulos and
colleagues (Georgopoulos et al. 1982; Schwartz et al. 1988)
showed that motor cortical activity was correlated well to
extrinsic coordinates, it was not clear whether the task
(center3out reaching) could clearly dissociate the two coor-
dinate frames. An attempt to make this distinction by having
the animal perform the task in spatially separated regions of the
workspace (Caminiti et al. 1990) showed that, although there
was a global tendency across the population of recorded units
for an orderly shift in preferred directions, this was difficult to
see in individual units as shoulder azimuth varied across dif-
ferent regions of space. Interestingly, the statistical shift in
preferred direction did not affect the population vector direc-
tion. Another experiment (Scott and Kalaska 1995, 1997) com-
pared responses of motor cortical cells as the arm was held in
two different postures. Although it was concluded that arm
configuration caused a change in preferred direction, only
about one-half of the cells had a statistically significant change
in their preferred direction between the two postures. Less than
30% of units in this study had preferred directions separated by
more than (645°), and these differences were insufficient to
cause a directional shift in the calculated population vectors. A
recent study by Kakei and colleagues (1999) used a behavioral
paradigm consisting of a single joint (wrist) movement in
either a pronated, supinated, or neutral starting position. The
different starting positions allowed them to separate three
reference frames: based on global hand movement, muscle
line-of-action and joint rotation. They found a population
(;30%) of cortical units in M1 that were correlated with a
muscle coordinate frame (intrinsic) and an even larger popu-
lation (;50%) that were correlated with the direction of hand
movement (extrinsic). They concluded that M1 is involved in
“not just the final computation” (i.e., computation of patterns
of muscle activity) of the sensorimotor transformation, but in
multiple stages of that transformation. These studies are incon-
sistent with the concept that the motor cortex is isolated on one
rung of a hierarchical ladder between intrinsic and extrinsic
coordinate systems.

Joint angular velocity population vectors

Population vectors calculated over short intervals predict
the movement’s kinematics (Moran and Schwartz 1999b;
Schwartz 1993; Schwartz and Moran 1999). Although popu-
lation vectors were originally based on vectorial contributions
of neurons in extrinsic two-dimensional (2D) space, they can
also be applied to anyn-dimensional feature space. In this
paper we define seven joint angles (i.e., DOF) to describe the
arm’s configuration: three at the shoulder, one at the elbow,
one in the forearm, and two at the wrist. The position of the
hand does not uniquely define the arm’s configuration; that is,
the arm could have many configurations for the same hand
location. This is commonly referred to as the “degrees of
freedom” problem (Bernstein 1967). Although the DOF prob-
lem predicts an infinite number of possible trajectories, reach-
ing movements are quite stereotypical in the relation between
intrinsic and extrinsic parameters (Georgopoulos et al. 1981;
Helms-Tillery et al. 1995; Soechting and Lacquanti 1981).
Soechting and Flanders (1989), for example, found simple

linear relationships for arm elevation and yaw angles to target
location when humans pointed in the dark. Moran and
Schwartz (1999b) found that, in drawing tasks performed by
monkeys, there was a very high correlation between individual
joint angular velocity and the cosine of hand direction. This
suggests that M1 cortical activity, which is highly cosine-tuned
to hand velocity in reaching tasks, would also be well corre-
lated to joint angular velocity. In this study, we compared the
relationship between hand velocity and cortical discharge to
joint angular velocity and cortical discharge.

M E T H O D S

Virtual reality simulator

Two rhesus monkeys (Macaca mulatta,4–6 kg) were operantly
trained to perform a 3D center3out reaching task in a virtual reality
simulator (Fig. 1). The monkey sat in a primate chair with its head
restrained. A custom-made stereo monitor was mounted in front of
and above the monkey’s head with the screen’s display directed
downward. A mirror, mounted below the monitor and angled at 45° in
the sagittal plane, reflected the display. The monkey viewed the
reflected display through a pair of stereographic goggles (CrystalEyes,
StereoGraphics). Different viewpoints (parallax values adjusted for
inter-ocular distance) of the same image were presented to each eye
through these goggles in an alternating, shuttered pattern (120 fields/s)
to produce an illusion of depth.

An infrared marker was placed on the dorsum of the monkey’s
hand. The 3D position of the marker was measured in real-time by an
optoelectronic tracking system (Optotrak 3010, Northern Digital).
Four other infrared markers recorded positions on the wrist (2), elbow
(1), and shoulder (1). A graphics mini-computer (Power Series
4D320VGX, Silicon Graphics) recorded the current position of the
monkey’s hand and rendered a virtual representation of it to the stereo
display. Whenever the monkey moved its hand, it could see a sphere

FIG. 1. Illustration of the experimental setup. An opto-electronic tracking
device calculated the 3-dimensional (3D) position of the monkey’s hand in
real-time. A graphics minicomputer used the real-time position data to update
an interactive stereoscopic scene projected from a monitor located above and
in front of the monkey. A front-silvered mirror reflected the display (dotted
lines) through a pair of stereoscopic goggles worn by the monkey. In the virtual
scene, a computer-generated sphere floated where the monkey’s hand would
appear were it able to see its actual hand. As the monkey moved its hand, the
cursor sphere moved with the same speed and direction. The virtual workspace
for the reach was a cube with a 70-mm face.

2577JOINT VELOCITY AND MOTOR CORTICAL DISCHARGE IN REACHING



(cursor) in the virtual environment move with the same direction and
speed. When in the simulator, the monkey could not see its hand or
arm; only the virtual representation of hand location. The monkeys
received liquid rewards for performing the task correctly. In all cases,
the monkeys were treated in accordance with the Institutional Animal
Care and Usage Committee and Society for Neuroscience guidelines.

Center3out task

The task began when the monkey touched the cursor sphere to
another sphere (center sphere) positioned in the center of the virtual
scene. After a random minimum hold time (300–500 ms), the center
sphere disappeared and a target sphere appeared at one of eight
positions at the corners of a virtual cube centered around the center
position (Fig. 1). Each edge of the cube was 70 mm in length, which
made the overall movement from the center to the target approxi-
mately 60 mm. Once the target sphere appeared, the monkey had a
limited time (300–500 ms) to move its hand to the target. After
reaching the target sphere and holding that position for a random
period (170–500 ms), a reward was given. A new trial began after an
inter-trial interval (500–1,000 ms). A reach was performed to each of
the eight targets at least five times (minimum 40 total trials) in a
random block design.

Cortical recording

The electrophysiological methods and surgical procedures have
been described previously in detail (Schwartz 1992). After the mon-
key had been trained for several months in the center3out task, a
circular recording chamber (19 mm diam) was placed over the con-
tralateral motor cortex under general anesthesia of isoflurane, ket-
amine, and xylazine. The recording chamber was held in place with
dental acrylic. On each recording day, the head was immobilized
mechanically. A Chubbuck microdrive was mounted on the chamber
and hydraulically sealed (Mountcastle et al. 1975). Extracellular re-
cordings were made using glass-insulated, platinum iridium electrodes
(1–3 MV impedance) attached to the microdrive. The microdrive
could position the electrode anywhere within the chamber and its
depth within the brain was controlled with 1mm accuracy. Typically,
only one penetration was made each day. Action potentials of single
units were identified by the criteria of Mountcastle et al. (1969) and
separated using a differential amplitude discriminator. Every attempt
was made to record from all cortical layers. For each isolated unit, a
center3out task was performed by the monkey followed by a passive
examination of the arm to determine whether its activity was related
to the movement of a particular body part or joint. Recording sessions
ranged from 4–6 h. The monkey was returned to its home cage after
each session. Recordings from each hemisphere were performed over
a 6- to 8-wk period. Postmortem analysis confirmed that all cortical
units analyzed in this study were located rostral to the central sulcus
at about the level of the precentral dimple.

Kinematic recording and modeling

In addition to recording the position of the hand, the positions of
four other points on the arm were recorded by the optoelectronic
recording system. Infrared markers (IRED) were placed on the radial
and ulnar sides of the wrist, on the lateral malleolus of the elbow, and
just distal to the head of the humerus. The marker data were smoothed
using a 10-Hz, low-pass, fifth-order, phase-symmetric digital filter
(Woltring 1986). Movement onset and offset times were calculated so
that movement onset coincided with the hand speed rising to 25% of
maximum and movement offset coincided with the hand speed falling
to 35% of maximum. The data were divided into 100 bins. Bin size
was calculated by dividing the total movement epoch into 40 equal
intervals. Thirty additional bins were assigned just prior to (prebins)

and just after (postbins) the movement period and had the same
binwidths as the 40 movement bins.

The five IRED markers were used to calculate instantaneous atti-
tude matrices for the humerus, ulna, radius, and hand. The scapula
was defined as the inertial reference frame for the kinematic model
and was assumed a fixed, global reference frame throughout the
movement. The five segmental attitude matrices were used to calcu-
late four rotation matrices corresponding to the modeled joints of the
arm (shoulder, elbow, forearm, and wrist). Seven Cardanic angles
(Euler permutationx, y9, z0) were calculated from the joint rotation
matrices and are as follows: shoulder adduction/abduction, shoulder
internal/external rotation, shoulder flexion/extension, elbow flexion/
extension, radial pronation/supination, wrist flexion/extension, and
wrist abduction/adduction.

A forward kinematic arm model was constructed to predict hand
position from measured joint angles. Accurate postmortem measure-
ments (segment lengths, joint center locations, etc.) were taken from
the dissected arm bones of each subject. These values were averaged
across subjects for use in a general monkey arm model. The accuracy
of the model was judged by applying a set of averaged joint angle
trajectories (across all subjects) to the model and comparing the
resulting predicted hand trajectories to the measured hand trajectories
(averaged across all subjects). A set of equations for the Jacobian
matrix, which relates the partial derivatives of hand coordinates to
joint coordinates, were similarly derived from the model. The Jaco-
bian matrix is a function of joint posture; therefore the subjects’
average posture during the central hold position was used to define a
static Jacobian matrix used in all subsequent analyses. Since there are
seven joint angles and only three hand coordinates, the Jacobian is not
square (i.e., 33 7). To solve for the inverse kinematic model, a right
pseudoinverse of the Jacobian was used as follows

u̇ 5 JT~JJT!21ṗ (1)

whereu̇ 5 7 3 1 vector of joint angular velocity,J 5 3 3 7 static
Jacobian matrix, andṗ 5 3 3 1 vector of hand velocity.

Spike rate processing

Only trials that contained a complete set of neural and kinematic
data were analyzed. The data consisted of at least 40 trials per cortical
unit (5 repetitions each to 8 targets), but in some cases consisted of as
many as 160 trials per unit (20 repetitions each to 8 targets). The time
epoch analyzed began when the target sphere first appeared and ended
when the monkey had moved the cursor sphere to the target sphere
and held it within the target sphere for a random period of time
(170–500 ms). A partial binning technique was used to determine the
discharge rate during the entire time epoch (Richmond et al. 1987;
Schwartz 1992).

The square root transformation was performed on the discharge rate
to apply standard statistical techniques to the data. Although data
transformations are a conservative, statistical necessity to performing
parametric tests on data from nonnormal distributions, such as neural
discharge rates, we performed the analysis on both the raw and the
transformed data to show that the interpretation of the analysis is
unaltered by the square root transformation.

Multiple linear regression
HAND VELOCITY TUNING. A multiple linear regression between
cortical activity and 3D hand velocity was performed for each cortical
unit. The form of the regression equation is

D# *i 5 bi,0 1 bi,xẋ# 1 bi,yẏ# 1 bi,zż# (2)

whereD* 5 transformed discharge rate,b0–bz 5 regression coeffi-
cients,x 5 anterior/posterior hand position,y 5 superior/inferior hand
position,z 5 right/left hand position, andi 5 cortical unit i.
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Also, the bars over the variables represent averages taken over the
time bins corresponding to reaction and movement time, and the dots
over the variables represent the first derivative with respect to time.

Each movement repetition was an independent observation in the
regression. The relationship between the discharge rate and the direc-
tion of movement can be described as cosine tuned (Georgopoulos et
al. 1982). InEq. 2,this cosine-tuned relationship has been modified to
include hand speed (Moran and Schwartz 1999a). The regression
coefficientsbx, by, andbz represent the preferred direction vector of a
motor cortical unit. The right-hand side ofEq. 2 (excluding theb0

term) is a dot product between the preferred direction vector of the
cortical unit and hand velocity vector; this is comparable with the
cosine of the angle between these two vectors.

JOINT ANGULAR VELOCITY TUNING. The average joint angular
velocities of the arm were also used to predict the discharge rate of
each cortical unit. Average joint angular velocity was defined as the
difference between a joint angle at the beginning and end of the
trajectory divided by the movement time. Using a multiple linear
regression, cortical activity and joint angular velocity were related by
the equation

D# *i 5 bi,0 1 b1u̇
#

1 1 bi,2u̇
#

2 1 bi,3u̇
#

3 1 bi,4u̇
#

4 1 bi,5u̇
#

5 1 bi,6u̇
#

6 1 bi,7u̇
#

7 (3)

where u1 5 shoulder adduction/abduction,u2 5 shoulder internal/
external rotation,u3 5 shoulder flexion/extension,u4 5 elbow flex-
ion/extension,u5 5 radial pronation/supination,u6 5 wrist flexion/
extension, andu7 5 wrist abduction/adduction. The rest of the
variables and symbols are defined inEq. 2.

Equation 3takes the same form asEq. 2except that thex, y, andz
cartesian coordinates are replaced by seven cardanic joint coordinates.
The regression coefficients inEq. 3 (except forb0) essentially repre-
sent a “preferred angular velocity” much like the regression coeffi-
cients inEq. 2 represent a preferred direction vector. Although the
preferred angular velocity vector is seven-dimensional, it can be used
in a population vector analysis in a similar manner to 2D and 3D
preferred directions.

REGRESSION OPTIMIZATION. The joint angular velocity tuning de-
scribed above included seven joint angles as independent factors in
the regression model. To determine whether all seven joint angular
velocities were needed in the model, the relative contribution that each
joint angle added to the prediction of the discharge rate was compared.
First, the coefficients for each regression were standardized (standard,
partial regression coefficients) (Sokal and Rohlf 1997). This allowed
comparisons of the relative strengths of the effects of several inde-
pendent variables on the same dependent variable. The joint angular
velocities with larger standard, partial regression coefficients had
greater contributions to the fit of the regression model (Ashe and
Georgopoulos 1994). Second, the number of factors needed in the
regression model was optimized for each of the cortical units. Each
average joint angular velocity was considered an independent factor in
the model. The computer algorithm called RBEST in the IMSL
software package (Visual Numerics, Houston, TX) was used to de-
termine which combination of factors produced the best-fitted regres-
sion equation for each task-related unit. The algorithm is based on an
efficient technique of considering all possible regression permutations
(Furnival and Wilson 1974). A measure of the usefulness of a regres-
sion model is the coefficient of determination (r2), which describes
how much of the total variation in the discharge rate can be explained
by the regression model. The RBEST algorithm used in this study
calculated the adjusted-r2, which is a normalization of ther2 that
allows a comparison of regression models with different numbers of
regressors. The algorithm was used to determine the number and
combination of regressors that produced the largest adjusted-r2. The
regression with the largest adjusted-r2 was termed the “best” regres-
sion for that cortical unit.

Population analysis

Two sets of population vectors were calculated as a time series
throughout the task: one based on hand velocity tuning and the other
on the joint angular velocity tuning. Only units with significant
regression equations (P , 0.01) recorded from the right hemisphere
during reaching with the left arm were used to create population
vectors. Population vectors based on the joint angular velocity tuning
were calculated using the seven-DOF model.

The population vector is a useful tool for evaluating the collective,
predictive power of the cortical units over time. The regression
equations described previously were calculated over a single epoch
spanning the entire reaction and movement time, making it impossible
to use this analysis by itself to describe the temporal variation between
movement parameters (i.e., hand velocity or joint angular velocity)
and discharge rate. However, the regression result (preferred direc-
tion) can be used to calculate population vectors at different times in
the task. A time series of population vectors based on instantaneous
discharge rate in 9-ms bins was used to compare population activity to
movement parameters as they varied throughout the reach (Eq. 4).

PVj,t 5
1

N
O
i51

N

1 D*i,t 2 D̂*i
D*imax

2 D̂*i
z

bi, j

Î¥
j51

M

bi,j
22 (4)

wherePVj,t 5 population vector for coordinatej at time bint, D*i,t 5
transformed discharge rate of cortical uniti at timet, D̂*i 5 geometric
mean of transformed discharge rate of uniti over all movements,
D*imax

5 maximum transformed discharge rate of uniti over all
movements,bi,j 5 regression coefficient for cortical uniti and coor-
dinatej, N 5 number of cortical units, andM 5 number of regression
factors (hand velocity5 3, joint angular velocity5 7).

The results ofEq. 4 were integrated in time to yield a population
trajectory. In the case of hand velocity tuning information, the pop-
ulation trajectory was directly compared with the actual hand path
during the movement. When integrating the joint angle population
vectors, the initial posture of the arm (i.e., joint angles during initial
position at the center target) was used as the integration constant. The
resulting joint angle population trajectories were then applied to a
forward kinematic model of the arm to yield a predictive hand
trajectory. Because the population vectors were created using the
discharge rates of cortical units that precede the actual movement of
the arm, a time lag was incorporated in the discharge rate of the unit.
This lag was iteratively increased from zero until the root-mean-
squared (RMS) error between the population trajectories and the
actual hand trajectory was minimized.

R E S U L T S

A total of 298 cortical units from 3 hemispheres of 2
monkeys were individually recorded during the center3out
task (n 5 18,272 reaches; average of 7.7 reaches per target per
cortical unit). These units were all located in the proximal-arm
area of the primary motor cortex (Fig. 2). The frequency of
discharge in 227 of the 298 units (76.1%) varied with the target
direction (ANOVA, P , 0.05). Only these 227 “task-related”
units were furthered analyzed (n 5 13,976 reaches).

Kinematics

The mean speed profiles (n 5 13,976) for each coordinate of
the hand velocity and joint angular velocity for all movements
are shown in Fig. 3. Average reaction and movement times
were 281.06 71.8 (SD) ms and 374.66 95.8 ms, respectively.
The hand speeds (Fig. 3A) followed a bell-shaped curve in all
three dimensions, and their relative timings suggest that the
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reaching movement was made initially in the frontal plane
because the superior/inferior and the right/left speeds peaked
around 450 ms while the anterior/posterior speed crested ap-
proximately 40 ms later. Shoulder internal/external rotation
and adduction/abduction speeds peaked just prior to the frontal
plane hand speeds while shoulder and elbow flexion were
delayed and corresponded with anterior/posterior hand speeds.

Correlations between regression factors

The mean and standard deviation for the Pearson correlation
coefficients between the anterior, superior, and right velocities
and between all joint angular velocities are shown in Tables 1
and 2. As expected, there were very low correlations and
standard deviations between the anterior, superior, and right
velocities. The standard deviations for the correlation between
joint angular velocities were much larger and indicated that
these correlations varied widely from trial to trial. Shoulder
flexion velocity and elbow flexion velocity had a large corre-
lation coefficient (r 5 20.672). The same was true for shoul-
der adduction and internal rotation (r 5 20.643). Large cor-
relations suggest co-linearity among the joint angular
velocities, which could distort the regression model. A toler-
ance calculation, which is the reciprocal of the variance-infla-
tion factor (VIF), was performed. A tolerance value of,0.25
typically indicates that the correlation between regression fac-
tors is significant and will greatly affect the results of the
regression model. The tolerance calculated over all trials was
.0.3 (VIF , 3.3). Although the correlations coefficients were
large, each joint angular velocity could be considered an inde-
pendent regressor in the model.

Although the individual components within a reference
frame could be considered independent for the regression
model, the intrinsic and extrinsic reference frames were well-
correlated to each other. This high correlation is demonstrated
in Table 3. For each monkey, the three hand velocity compo-
nents (anterior/posterior, superior/inferior, right/left) were used
as independent regression factors to predict the joint angular
velocity at any movement time (i.e., at each of the 40 move-
ment bins) within the eight-target workspace (monkey F,right
arm5 126,080 observations, left arm5 176,640 observations;
monkey G,left arm5 256,320 observations). As seen in Table
3, the three hand velocity components were able to predict all
of the joint angular velocities well (all regressions significant,
P , 0.00001). Notably, shoulder internal/external rotation,
shoulder flexion/extension, and elbow flexion/extension could
be predicted almost exactly from the hand velocity components
(r2 . 0.9).

Kinematic model of the arm

The seven measured joint angles were applied to a forward-
kinematic skeletal model of the arm to yield a prediction of
hand trajectory. Figure 4 shows a typical comparison of an
actual hand path (—) and the hand path predicted by applying
the measured joint angles to the skeletal arm model (E). The
mean RMS error is 4.5 mm for the 60-mm task. The skeletal
model was able to predict the hand trajectory from the mea-
sured joint angles with approximately a 7% error.

FIG. 2. Electrode penetrations. Only penetrations anterior to the central
sulcus were analyzed. cs, central sulcus; as, arcuate sulcus; ips, intraparietal
sulcus.

FIG. 3. Individual coordinate speeds.A: hand speeds for the anterior/pos-
terior (AP), superior/inferior (SI), and right/left (RL) coordinates. The AP
coordinate (depth) peaks later than the 2 frontal-plane coordinates.B: joint
speeds for shoulder adduction/abduction (SA), shoulder internal/external rota-
tion (SIR), shoulder flexion/extension (SF), elbow flexion/extension (EF),
forearm pronation/supination (PR), wrist flexion/extension (WF), and wrist
adduction/abduction (WA). Shoulder and elbow flexion tend to peak later than
the other joint coordinates, which suggests that their dominate effect is on AP
depth.

TABLE 1. Correlation coefficients of the average hand velocities
during center3out task

Anterior Velocity Superior Velocity
Right

Velocity

Anterior velocity 1.000
Superior velocity 0.0016 0.176 1.000
Right velocity 20.0486 0.167 20.0166 0.148 1.000

Values are means6 SD. The calculated tolerances for all 3 were greater
than 0.99.
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The Jacobian matrix assumes that joint angle and endpoint
velocities are well related in a given region of the workspace.
Predicting joint angular velocities from measured hand veloc-
ities using the pseudoinverse of the Jacobian yielded similar
results to the correlations between regression factors described
above. In Fig. 5, the actual and Jacobian-predicted angular
velocities for shoulder flexion/extension and shoulder adduc-
tion/abduction are plotted for reaches to two targets (targets 3
and 6). Throughout the entire workspace, shoulder flexion,
shoulder internal rotation, and elbow flexion velocity were well
predicted by the static Jacobian. However, this was not so for
shoulder adduction velocity and the distal joint angular veloc-
ities. Both the Jacobian and correlation analyses show that
hand velocity is correlated to shoulder flexion, shoulder inter-
nal rotation, and elbow flexion, with a lack of correlation
between hand velocity and the other four joint angular veloc-
ities.

Multiple regression analysis

Figure 6A shows a histogram of significant adjusted-r2 val-
ues for regressions to hand velocity and joint angular velocity
(JAV). A total of 204 (89.9%) of the 227 units had significant
regressions to the hand velocity, while 192 units (84.6%) had
significant regressions to the joint angular velocities (P ,
0.01). Significant regressions to both hand and joint angular

velocities were found in 186 units (81.9%). The mean ad-
justed-r2 for the JAV model (m 5 0.363; s 5 0.218) was
smaller than for the hand velocity model (m 5 0.511; s 5
0.203). Figure 6B shows the cumulative frequency distribution
of the P values for all regressions. The two plots overlap
indicating that both regressions provide equally significant
predictions of the cortical discharge rate (Kolmogorov-Smir-
nov 2-sample test,P 5 0.289).

The results for a typical unit (FL128) using the hand velocity
model are shown in Fig. 7. The relationship between the actual
and predicted discharge rates (Fig. 7A) was linear (adjusted-
r2 5 0.634;P , 0.0001). The residual error versus predicted
discharge rate from the regression (Fig. 7B) was representative
of 181 of 227 units used (79.7%). No discernable trend exists
in the residuals. The cumulative distribution of the residuals
(Fig. 7C) was fairly linear, indicating that the residual error
was normal in its distribution. One limitation of the model was
that it could not accurately predict a discharge rate of 0 Hz. The
predicted discharge rate could be 0 Hz only when the hand
speed was zero throughout the task. This limitation of the
model was evident in 46 of the 227 regressions (20.3%). For
example, the plot of the actual versus predicted discharge rate
for unit GR26(Fig. 8A) contained data points where the actual
discharge rate was 0 Hz, but the predicted discharge rate was
nonzero. The residual versus predicted plot (Fig. 8B) contained

TABLE 3. r2 for a regression model using the three components of
hand velocity (anterior/posterior, superior/inferior, right/left) to
predict a joint angular velocity

Joint Angular Velocity

r2

monkey F,
arm R

monkey F,
arm L

monkey G,
arm L

Shoulder adduction/abduction 0.626 0.526 0.531
Shoulder internal/external rotation 0.955 0.950 0.938
Shoulder flexion/extension 0.957 0.955 0.915
Elbow flexion/extension 0.957 0.968 0.922
Pronation/supination 0.343 0.544 0.045
Wrist flexion/extension 0.192 0.271 0.285
Wrist abduction/adduction 0.209 0.161 0.478

Each of the 40 movement bins to each of the 8 targets for each repetition is
considered an observation in the regression [monkey F,right arm5 126,080
observations (40 bins3 8 targets3 394 repetitions), left arm5 176,640
observations (40 bins3 8 targets3 552 repetitions);monkey G,left arm 5
256,320 observations (40 bins3 8 targets3 801 repetitions)]. The results
suggest that the extrinsic and intrinsic references frames are well-correlated for
the movements within this workspace (allP , 0.00001).

FIG. 4. Comparison of actual hand trajectories and those based on recorded
joint angles applied to a forward kinematic model of the arm. The high
correlation suggests that accurate joint angles were measured and that 7
degrees-of-freedom (DOF) is sufficient to model a monkey’s arm.

TABLE 2. Correlation coefficients of the average joint angular velocities during the center3out task

Shoulder Adduction
Shoulder Internal

Rotation Shoulder Flexion Elbow Flexion Pronation Wrist Flexion
Wrist

Abduction

Shoulder adduction 1.000
Shoulder internal rotation 20.6436 0.213 1.000
Shoulder flexion 20.5376 0.276 20.0616 0.164 1.000
Elbow flexion 0.3576 0.281 0.0856 0.175 20.6726 0.101 1.000
Pronation 20.1126 0.423 0.2906 0.324 20.1966 0.504 0.3766 0.580 1.000
Wrist flexion 20.4326 0.321 0.3876 0.323 0.2176 0.328 20.4136 0.371 20.0526 0.530 1.000
Wrist abduction 0.2616 0.339 20.2606 0.313 20.0466 0.405 0.3626 0.532 20.2026 0.474 20.5366 0.429 1.000

Values are means6 SD. The calculated tolerances for all 7 were greater than 0.3.
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a linear portion around 0 Hz, reflecting this nonzero prediction
of the discharge rate (adjusted-r2 5 0.720;P , 0.0001). All of
these cases occurred when the discharge rate was,10 Hz. This
reflects a limitation of the regression model for units with low
discharge rates. The cumulative frequency of the residuals only
deviated slightly from linearity as the residual value increased
(Fig. 8C).

The results for the typical unit (FL128) using the JAV model
with seven DOF are shown in Fig. 9. As with the hand model, the
relationship between the actual and predicted discharge rates (Fig.
9A) was linear (adjusted-r2 5 0.338; P , 0.0001). This was
representative of 179 of the 227 units used (78.9%). No discern-
able trend exists in the residuals (Fig. 9B). The cumulative distri-
bution of the residuals (Fig. 9C) indicated that the residual error
was normal in its distribution. The JAV model also had the
limitation at low discharge rates found in the hand model. This
limitation of the model was evident in 48 of the 227 regressions
(21.1%).

Optimal regression

Figure 10 shows how often each factor had the largest
standard partial regression coefficient. In the hand velocity
model, the anterior/posterior velocity (51.5%) most frequently
was the factor that explained most of the variance in discharge
rate (Fig. 10A). The superior/inferior (23.5%) and right/left
velocities (25.0%) made similar contributions to the model. In
the JAV model, three angles accounted for 76.6% of the
variance (Fig. 10B). The standard, partial regression coeffi-
cients for shoulder flexion, elbow flexion, and shoulder internal
rotation were most frequently ranked first in all regression
equations. Wrist flexion and pronation contributed the least to
the regression. They were ranked first for only 2.1 and 3.1% of
the regressions, respectively.

In the regression analyses above, three regression factors
were used for the hand velocity model, and seven regression
factors were used for the JAV model. Using the RBEST
algorithm described inMETHODS, we determined whether the
full model (i.e., using all regression factors) was necessary to
obtain the best-fitted regression. The best regressions for the
hand velocity model (Fig. 11A) most frequently involved the
full model (i.e., all 3 factors). In contrast, the best regressions
for the JAV model most frequently involved only a partial
model. More than one-half (63.6%) of the best-fitted regres-
sions for the JAV model required four or less factors (Fig.

FIG. 6. Results of a multiple regression analysis of arm kinematics on
single cortical unit data.A: histogram of adjusted-r2 for both the hand velocity
model (Eq. 2) and joint angular velocity (JAV) model (Eq. 3). The mean
adjusted-r2 for JAV model (m 5 0.363; n 5 192) is lower than the hand
velocity model (m 5 0.511;n 5 204).B: cumulative frequencies ofP-values
for the 2 models. The high degree of overlap in the 2 curves shows that the 2
models were equivalent in explaining the variance of the cortical unit’s
discharge rate.

FIG. 5. Joint angular velocities for (A) shoulder flexion/extension and (B)
shoulder adduction/abduction to 2 reaching targets (3: superior, left, anterior;
6: inferior, right, posterior). The solid line is the actual angular velocity, and
the dashed line is the angular velocity predicted using the Jacobian matrix that
was calculated at the initial arm position. Elbow flexion/extension and shoulder
internal/external rotation were as well predicted as shoulder flexion/extension.
This complements the finding that a simple, linear regression could be used to
predict these three joint angular velocities from the hand velocities. Pronation/
supination and the wrist were as poorly predicted as shoulder adduction/
abduction.
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FIG. 7. Regression results for an example cortical unit
(FL128) using the hand velocity model.A: comparison
of predicted vs. actual firing rate.B: comparison of the re-
sidual error vs. the predicted firing rate. Plotting the
residuals (predicted2 actual discharge rates) against the
predicted discharge rate shows that the error is random.C:
cumulative frequency of residuals. Plotting the residuals
on a cumulative-frequency Gaussian scale verified that
the residuals were normally distributed (i.e., linear result
between 1st and 3rd quartile).D: raster plot of the raw
discharge times to each target. This type of result was
found for 80% of the movement-related cortical units.
Anterior targets are plotted closer to the center of the
graph (rows 2and3: counter-clockwise frombottom left:
targets 1, 3, 4, 2). Posterior targets are plotted closer to
the edges of the graph (rows 1and4: counter-clockwise
from bottom left: targets 5, 7, 8, 6). The line at thebottom
is approximately 100 ms.

FIG. 8. Regressions results for a low-firing cortical
unit (GR26) using the hand velocity model.A: compar-
ison of predicted vs. actual firing rate.B: comparison of
the residual error vs. the predicted firing rate. The re-
siduals show a nonrandom error.C: cumulative fre-
quency of residuals. Like Fig. 7C, the residuals for these
low firing units (20% of total) were normally distrib-
uted.D: raster plot of the raw discharge times to each
target. Format is as Fig. 7D.
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11B). Eighty-nine percent of the regressions required five
factors or less in the model. Only 2% of the regressions
required the full model (i.e., all 7 regression factors) for the
best-fit.

Effects of the square-root transformation

It has been suggested that the square root transformation is
a “major statistical bias” that skews this type of statistical
analysis (Todorov 2000). A square root transformation is math-
ematically required when analyzing nonnormal data, such as
cortical discharge rates, with parametric statistical tests. Nev-
ertheless, we repeated our analysis using raw discharge rates
(single bin, no square root transformation). The number of
statistically significant regression equations to hand velocity
decreased from 89.9% (204 of 227) for the square-root trans-
formed data to 84.9% (191 of 225) for the raw data. Similarly,
the number of statistically significant regressions to joint an-
gular velocities decreased from 84.6% (192 of 227) to 82.7%
(186 of 225). The contribution of the regression factors re-
mained essentially the same in both cases as seen in Table 4.
The square root transform in no way skewed the interpretation
of the results.

Population vector analysis

The three dimensions of hand velocity and the four dominant
joint angular velocities were predicted from the cortical dis-
charge rates using the population vector analysis. As described
in METHODS, the population vector made with hand velocity
tuning used a three-DOF model, and the population vector
made with the joint angle tuning used a seven-DOF model.

Only units with significant regression equations (P , 0.01)
recorded from the right hemisphere during reaching with the
left arm were used to create population vectors (n 5 156
cortical units for hand velocity tuning;n 5 145 cortical units
for JAV tuning).

The predicted speed profiles for shoulder adduction/abduc-
tion, shoulder internal/external rotation, shoulder flexion/ex-
tension, and elbow flexion/extension are plotted in Fig. 12. The
plots represent the average speed profiles for each of the eight
movements predicted by the population vector model. Al-
though the relative bell shapes of the predicted profiles approx-
imate the actual speed profiles (Fig. 3), there are subtle differ-
ences in the relative peaks. Most notably, shoulder and elbow
flexion/extension peak almost simultaneously in the actual
reach, but shoulder flexion precedes elbow flexion by over 70
ms in the population vector prediction (for comparison, Fig. 3
vs. Fig. 12). In addition, the maximal speed predicted for
shoulder adduction is approximately one-half of the actual
speed obtained during the reach. The remaining three profiles
give a better prediction of the actual peak speed for their
respective joint angles.

The predicted velocity profiles for shoulder adduction/ab-
duction and shoulder flexion/extension are plotted in Fig. 13.
The plot represents the velocity profile predicted by the pop-
ulation vector model to two of the targets (3: superior, left,
anterior; 6: inferior, right, posterior). The predicted velocity
profile for shoulder adduction totarget 3 is poor (%RMS
error5 267). In general, the percentage of RMS error between
the actual and predicted joint angular velocities was lowest
for shoulder flexion/extension, elbow flexion/extension, and
shoulder internal/external rotation. Further, the velocity profile

FIG. 9. Regression results for an example cortical unit
(FL128) using the JAV model with 7 regression coeffi-
cients.A: comparison of predicted vs. actual firing rate.
B: comparison of the residual error vs. the predicted
firing rate. Similar to Fig. 7B, no discernable pattern
emerges from the residuals of JAV model.C: cumulative
frequency of residuals. As in Figs. 7C and 8C, a linear
relationship shows that the residuals were normally dis-
tributed.
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predicted from the population vector model did not necessarily
agree with that predicted from the Jacobian model. For exam-
ple, the velocity profiles predicted by the population vector
model (Fig. 13) differ from those of the Jacobian model
(Fig. 5).

The population vector–derived trajectories of hand (green)
and joint angular velocity (blue) are displayed in Fig. 14.
Superimposed on this plot is the actual trajectory of the hand
during the task (red). The minimum, average RMS errors
between actual and predicted trajectories were 3.23 mm for the
hand and 5.68 mm for the joint angles. These were found at a
lead of 102 ms for the hand velocity model and 121 ms for the
joint angular velocity model. Qualitatively there appears to be
greater errors in the prediction to some targets using the joint
angle tuning than the hand velocity tuning. However, no clear
difference between the RMS errors of the two population
trajectories can be demonstrated since the kinematic arm model
adds, on average, a 4.5-mm error to the JAV-derived hand
trajectory.

One bias that can limit the accuracy of a population vector
approach is a preferred directional space that is not uniform. In
other words, if the regression coefficients for the units were not
uniformly distributed, then the population vector may be
skewed. For example, if there were a high percentage of
preferred directions to the right (in the case of hand velocity),
then the population vector could be improperly skewed along
that axis.

To test whether the regression coefficients formed a uniform
distribution, we performed a bootstrap analysis. In the case of
the JAV, the regression coefficients for each unit were consid-

ered to form a preferred direction in seven-dimensional space.
These preferred directions represented unit vectors. The pre-
ferred directions were summed vectorially, and the resultant
vector was calculated by dividing the sum by the number of

TABLE 4. Comparison of raw versus square-root transformed data

Regression Parameter
Raw Discharge

Rates

Square-Root
Transformed

Discharge Rates

Anterior/posterior 55.0 51.5
Superior/inferior 20.4 23.5
Right/left 24.6 25.0
Shoulder adduction/abduction 8.6 10.4
Shoulder internal/external rotation 15.6 14.6
Shoulder flexion/extension 36.6 37.5
Elbow flexion/extension 25.8 24.5
Pronation/supination 2.7 3.1
Wrist flexion/extension 2.2 2.1
Wrist abduction/adduction 8.6 7.3

Values are percentages. The percentages indicate the frequency at which the
parameter contributed most to the fit of the regression equation. The transfor-
mation has little effect on the results.

FIG. 10. Percentages of coordinates that had the largest, standard, partial
regression coefficient for each cortical unit using both the hand velocity model
(A) and the JAV model (B). Anterior/posterior hand velocity was the dominant
coordinate in the hand model, while shoulder and elbow flexion were dominant
in the JAV model. Forearm and wrist angular velocities rarely dominated the
regression.

FIG. 11. Cumulative frequencies of the number of coordinates needed in
each model to best fit each cortical unit’s discharge rate. The hand velocity
model (A) required all 3 coordinates to fit more than 50% of the discharge rate.
In the JAV model (B), approximately 64% of the cortical unit discharge rates
could be best fit by 4 or fewer joint angles.
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unit vectors. In the ideal case, the resultant vector from a
uniform distribution would be exactly 0. We compared the
resultant vector to a bootstrapped distribution of 1,000 result-
ant vectors randomly created from a uniform seven-dimen-
sional distribution of unit vectors. A resultant vector of 0.0828
was found to be.95% of the bootstrapped distribution for the
seven-dimensional space, while a smaller resultant could be
considered representative of a uniform space. The magnitude
of the JAV resultant used in this analysis was 0.0901 and is
slightly above this criterion. The same analysis applied to a
three-dimensional space (spherical distribution) gives a result-
ant vector of 0.0940 for the 95% confidence interval. The hand
velocity resultant was.99% of the bootstrapped distribution
(resultant vector5 0.2225). Although preferred directions
from both models were not strictly uniform, the population
vector gave accurate predictions of the hand’s trajectory.

D I S C U S S I O N

The “excess degrees of freedom” problem is a common
theme in contemporary discussions of reaching (Haggard et al.
1995; Helms-Tillery et al. 1995; Sanger 2000). When moving
through free space, only three of the seven DOF in the arm are
needed to specify the position of the hand in space. This
implies that to complete a reaching movement, the combina-
tion of joints used to rotate the arm segments must somehow be

chosen from an infinite set of possibilities. Several studies have
asked whether arm posture (specified by the combined set of
joint angles) or hand displacement is represented in cortical
activity (Caminiti et al. 1990; Kakei et al. 1999; Scott and
Kalaska 1995, 1997). Although arm posture may have an effect
on motor cortical activity, we have found single-cell and pop-
ulation activity to be more robustly related to hand velocity
(Moran and Schwartz 1999b; Schwartz et al. 1988). Clearly the
hand’s trajectory is important behaviorally, as many studies
have shown stereotypical reaching trajectories with invariant
characteristics preserved across a wide set of conditions (At-
keson and Hollerbach 1985; Georgopoulos et al. 1981; Mo-
rasso 1981; Soechting et al. 1981).

Our previous work has demonstrated that the hand’s veloc-
ity, that is, its speed and direction, is well represented in motor
cortical activity during both reaching and drawing (Moran and
Schwartz 1999a,b; Schwartz 1993; Schwartz and Moran 1999).
For arm movements along the same path but in opposite
directions, the motor cortical activity was differentially mod-
ulated, although the joint angles were the same for each point
along the opposing paths (Moran and Schwartz 1999b). This

FIG. 12. Population vector predictions for (A) the 3 hand velocities and (B)
the 4 dominant joint angular velocities (shoulder abduction/adduction, shoul-
der internal/external rotation, shoulder flexion/extension, and elbow flexion/
extension). The relative peaks for the predicted hand velocities are consistent
with those of the actual hand velocity. However, the predicted peak for
shoulder flexion occurs more than 70 ms earlier than the predicted peak for
elbow flexion even though the peaks overlap in the actual reach (compare with
Fig. 3).

FIG. 13. Population vector predictions for the angular velocities of (A)
shoulder flexion/extension and (B) shoulder adduction/abduction. The solid
lines are the actual, measured angular velocities totargets 3and6. The dashed
lines are the angular velocities predicted by the population vector model using
the 7-DOF regression model. Note that the population vector model poorly
predicts shoulder adduction totarget 3but predicts shoulder flexion fairly well.
Overall the population vector model predicted shoulder flexion/extension,
elbow flexion/extension, and shoulder internal/external rotation to all targets
better than the other joint angular velocities in the model. Further, the popu-
lation vector prediction does not seem to match the prediction from the
Jacobian analysis (compare with Fig. 5).
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implied that the joint angles per se were not well-correlated to
cortical activity. However, if hand velocity is the extrinsic
parameter represented in the population of cortical discharge
rates, then joint angular velocity might be the more appropriate
intrinsic parameter with which to make comparisons.

Recent studies have attempted to determine whether the
selection of joint angles specifies the arm trajectory or is
secondary to it (Caminiti et al. 1990; Kakei et al. 1999; Scott
and Kalaska 1995, 1997). The overall conclusion of these
studies has been that both intrinsic and extrinsic parameters can
be correlated to the activity of individual cortical neurons.
Indeed, our results confirm these past studies. However, our
findings, both through direct correlation and the Jacobian ma-
trix approach, suggest that hand velocity is well correlated to
some joint angular velocities of the arm (specifically, shoulder
flexion/extension, shoulder internal/external rotation, and el-
bow flexion/extension). In addition, the temporal relationship
between the population of cortical units and joint angular
velocity shows large errors in the predicted peaks of elbow and
shoulder speeds (Fig. 12). Specifically, the shoulder flexion/
extension preceded the elbow flexion/extension by over 70 ms
even though the two peaked simultaneously during the actual
reach. This corresponds to the results of Murphy et al. (1982),
who found that the activity of “shoulder-related units” pre-
ceded that of “elbow-related units” in the reaching task. Al-
though these timing discrepancies did not generate large errors
in the handpath during reaching, this type of temporal offset
could lead to significant handpath distortion in more complex
tasks, such as drawing.

In summary, this study resulted in three findings:1) hand
velocity and joint angular velocities were equally powerful
predictors of motor cortical discharge rate;2) the subset of

joint angular velocities required to predict neuronal activity in
M1 adequately were well correlated to the extrinsic parame-
ters;3) observations of joint angular “control” by M1 neurons
may be a secondary to the high correlation between intrinsic
and extrinsic reference frames.

Velocity-discharge correspondence

Moran and Schwartz (1999a) showed that the temporal
profile of cortical discharge was well correlated to the bell-
shaped velocity profile of the arm during reaching in a task that
was similar to this. Therefore it is expected that any pair of
bell-shaped profiles such as those generally found for the DOF
in this experiment and hand velocity would be correlated.
Nonetheless, it is interesting that velocity as a parameter is so
well represented in the activity of these neurons. Behavioral
studies (Soechting and Lacquaniti 1981) have shown that the
velocity profile of the hand is bell-shaped, consistent in a wide
range of reaching tasks, and the root of invariants such as
isochrony and motor equivalence. This shape is ideal for both
scaling and smoothness, criteria that make complex systems
more efficient to control (Hollerbach and Flash 1982; Morasso
et al. 1981).

Relative importance of angular degrees of freedom

JAVs of the shoulder and elbow tended to contribute more to
the fit of the regression than those of the forearm and wrist.
Wrist flexion and pronation contributed the least to the fit of the
JAV model based on their standard, partial regression coeffi-
cients. Four possible explanations for this finding were con-
sidered:1) angular velocities for wrist flexion and pronation

FIG. 14. Population vector trajectories for the hand during
the center3out task created with the hand velocity tuning
model (green) and the JAV tuning model (blue). The hand
velocity model used 3 regression coefficients. The JAV model
used 7 regression coefficients. The average, actual trajectory of
the hand is shown in red. While qualitatively the JAV model
population vector appears to have more error than the hand
velocity model population vector, no clear difference in their
root-mean-squared errors can be concluded when considering
the inherent 4.5-mm error of the arm model.
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varied little throughout the task (i.e., relatively constant joint
angles);2) the sampled area of M1 contained few units that
correlated with wrist and forearm movement;3) wrist flexion
and pronation contributed little to the accurate performance of
the reaching task; and4) relative importance of the joint angle
may vary throughout the movement.

If the angular velocity for a particular joint had a low
variance throughout the reach, its coefficient would generally
not contribute much to the regression fit. Elbow flexion, shoul-
der flexion, and shoulder internal rotation are the joint angles
that obtain the largest variations in speed during the
center3out task (Fig. 3). This may have contributed to their
relative importance in the regression. However, the joint an-
gular speed for pronation was greater on average than that of
shoulder adduction. Further, total angular displacement for
pronation was also greater than that for shoulder adduction.
Nevertheless, shoulder adduction had the largest standardized
coefficient in 10.4% of the regressions, whereas pronation had
the largest standardized coefficient in only 3.1% of the regres-
sions. These data indicate that the importance of a particular
joint velocity in the regression is not necessarily correlated
with its variation within the movement.

The second possibility considered was that the sampled area
of M1 contained few units that were correlated with wrist
activity. After each unit was recorded, a passive examination of
arm movement about each joint was performed. Of the 298
units studied, 253 had unequivocal modulations of activity
about at least one joint. One hundred ninety-nine of the 253
(78.7%) were related only to passive movement of the shoulder
and/or elbow. Only 54 of the 253 (21.3%) were related to
passive movement of the wrist and/or hand. Thirty-two of the
54 wrist-related units were task related and had significant
regression fits to joint angular velocity. The results of this
wrist-related subpopulation of cortical units were similar to
those of the entire population: namely, the best regression
typically required four or less joint angular velocities, and the
shoulder and elbow angular velocities contributed most to the
fit of the regression. It is unlikely therefore that the sampled
area of M1 biased the results.

If movement about a particular joint (e.g., wrist flexion) did
not contribute substantially to the accuracy of the reaching
task, then that movement may have contributed less to the fit of
the regression. In the experimental setup, the IRED marker that
controlled the cursor was positioned on the hand dorsum. It is
likely that wrist movements generated only relatively small
displacements of the cursor toward the target in comparison to
movements of the shoulder and elbow. This was tested by
selectively removing different joint rotations from the kine-
matic arm model and measuring the resulting errors in reach.
The models without shoulder flexion, elbow flexion, and shoul-
der internal rotation had RMS errors of 24.4, 32.8, and 29.4
mm. The error produced by these models is more than five
times that of the full model (full model5 4.5 mm). Without the
remaining joint angles, the models also had statistically signif-
icant increases in error: shoulder adduction (mean 6.5 mm),
pronation (7.1 mm), wrist flexion (5.3 mm), and wrist abduc-
tion (5.0 mm). However, these errors were much smaller than
those of shoulder internal rotation, shoulder flexion, and elbow
flexion (only 1.1–1.6 times the error of the full model). Wrist
flexion and pronation make statistically significant, yet rela-

tively small contributions to hand displacement in this reaching
task.

The fourth possibility we considered was that the relative
importance of the joint angular velocities varied throughout the
task. We re-analyzed the reaching movement using the dis-
charge rates within the reaction time (RT, epoch from the
target’s appearance to the onset of movement) and the move-
ment time (MT, epoch from the movement onset to offset). The
relative importance of the joint angular velocities and the
number of regressors for the best model were equivalent across
epochs.

Extrinsic versus intrinsic space

The transformation from hand position to joint posture is
both nonunique and nonlinear. For a reasonably small work-
space, with only two DOF, and assuming stereotypical move-
ments, the inverse of the Jacobian matrix (J[p, u]1) has been
theorized to describe a locally linear relationship between hand
velocity and joint angular velocity (Mussa-Ivaldi 1988). In-
deed, our data were so consistent for three of the arm angles,
both within a single movement and between movements to
different targets, that we were able to use a simple linear
regression to perform inverse kinematics on the joint angular
velocities (Table 3). These same angles were also well pre-
dicted in the Jacobian analysis.

However, the remaining four joint angular velocities were
not as well correlated with extrinsic coordinates. We estimated
joint angular velocities from the actual hand velocities using
either a Jacobian matrix that was calculated at the center
position in the workspace and held constant, or a Jacobian
matrix that was re-calculated at each instantaneous posture
(i.e., bin) during the reach. Table 5 shows the RMS error for
each estimated joint angular velocity as a percentage of the
actual, mean joint angular velocity. The Jacobian approach
clearly failed to predict shoulder adduction/abduction or the
distal three DOF, and this approach is unsuitable for predicting
these four DOF. Further, it has been assumed for reasonably

TABLE 5. RMS error as a percentage of the actual, mean joint
angular velocity

Joint Angular Velocity

%RMS Error

Constant Jacobian
Matrix

Continuously
Recalculated

Jacobian Matrix

Shoulder adduction/abduction 28.1 29.3
Shoulder internal/external rotation 6.3 5.2
Shoulder flexion/extension 17.6 4.4
Elbow flexion/extension 21.7 4.3
Pronation/Supination 13.7 13.4
Wrist flexion/extension 16.2 18.9
Wrist abduction/adduction 11.6 12.0

The joint angular velocity was estimated at each movement bin from the
hand velocity by the Jacobian using 2 methods. In the 1st method (1st column),
a Jacobian matrix was calculated at the beginning of the movement (hand in
the center of the workspace) and held constant throughout the reach. In the 2nd
method (2nd column), the Jacobian matrix was recalculated at every bin during
the reach. The RMS error was calculated between the estimated and actual
angular velocities. It was then made into a percentage of the actual, mean
joint angular velocity, a value found by calculating the sum of the squares for
the 7 angular velocities and determining the mean of this value over all bins in
the movement. RMS, root-mean-squared.
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small workspaces that the Jacobian matrix would be relatively
constant. However, the RMS error for shoulder and elbow
flexion/extension is much lower for the continuously calculated
estimate than for the constant estimate (Table 5), showing that
the assumption of a constant Jacobian matrix does not give
optimal results.

A fair number of recorded units (44%) were driven by
passive adduction/abduction of the shoulder, which shows that
the topographical region of motor cortex we sampled contained
units sensitive to this type of angular displacement. However,
the Jacobian method and the population vector method gener-
ally made different predictions of this parameter, and neither
prediction was very accurate. This suggests that the good
prediction of the other three joint angular velocities by the
population vector analysis is due to their strong correlation
with the extrinsic velocity of the hand. This population analysis
was able to detect changes in timing between those three joint
angles that neither the Jacobian nor the correlation could de-
tect. Both results lead us to conclude that extrinsic parameters
are better represented than intrinsic parameters in the cortical
activity. However, more experiments using tasks where the two
reference frames are more dissociated will be needed to sub-
stantiate this conclusion.

Nonetheless, it is useful to emphasize the strong correlation
between three of the main intrinsic DOFs and the extrinsic
hand velocity. This correlation during such a common, natural
movement such as unconstrained reaching may be indicative of
an optimized planning strategy. Such a characteristic would
have the advantage of obviating an explicit step or calculation
between reference frames.

This work was supported by the McDonnell-Pew Foundation and the Neu-
rosciences Research Foundation.
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