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Distributed motor processing in cerebral cortex

Andrew B Schwartz
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Responding to a visual cue requires processing throughout many areas

in the brain. The anatomical pathways connecting these diffuse areas are

numerous. One way to study the cognitive processing associated with

volitional movement is to identify common physiological properties in each

area. Recently, the discovery that neuronal activity is broadly tuned in many

of these cortical areas has led to new insights into the physiological structure
of the process underlying cognition in this distributed system.
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introduction

While the desire to move can originate in the absence
of overt environmental stimuli, it is much easier to study
movement generation when it is linked to known cues.
The processing by successive CNS structures of the sen-
sory cue leads to the action embodied in the desired
movement. A cold glass of water on a hot day, for in-
stance, may be considered both a target and a cue. It is
necessary for its behavioral significance to be recognized
along with its position in space. This information might
then be used to plan a movement trajectory of the arm,
from an initial position, to the glass of water. The tra-
jectory is a function of the desired behavior, as it would
differ, for instance, if the objective was to swat a fly in
the same position.

In step with the trajectory generation, a sequence of
joint angles and muscle activations need to be specified
to displace the arm. Inherent in this description is the
idea of parameters — physical quantities that can be
measured and represented in the activity of neurons.
Typically, sensory parameters are those aspects of the
environment that act on the individual, whereas mo-
tor parameters are measurements of the actions taken
by the individual to act on the environment. As soon
as mgvement occurs, both types of parameters change
together and the nervous system processes them simul-
taneously. Movement changes the environment, altering
the sensation used to generate the next portion of the
movement. This cyclic interaction blurs the boundary
between sensory and motor, a distinction that becomes
more artificial when considering neuronal connections
that are a few synapses away from the periphery. The
known anatomical connectivity between visual and mo-
tor cortical areas will be reviewed. Some physiological

properties and analytical approaches to the information
contained in these structures will also be discussed.

Parameter coding

Most investigations of volitional movement rely on the
representation of task-related parameters within a pattern
of neuronal activity. In the past twenty years, several
key features of parameter representation in such activ-
ity have become clear. In almost all sensory and motor
systems, parameters are represented by a broad single-
peaked function between the parameter’s value and the
discharge rate of individual cells. Such a function was
termed the neuronal response function by Erickson [1].
These functions are poor descriptors of parameters be-
cause they are ambiguous: each discharge rate codes for
two values of the parameter. Also, the functions are sus-
ceptible to noise, especially at the peak discharge rate
where small changes in firing frequency can lead to
large changes in the parameter value. This was one of the
reasons why the idea of population coding was invoked.
The same conclusion was reached from psychophysical
and neurophysiological studies of sensation. Population
activity has been implemented to encode vibration in-
tensity [2], imb position [3°] visual motion [4°*], selec-
tive visual attention [5], faces [6] and body location in
space [7] — abilities that emerge from concerted activity
of individual neurons.

Humphrey (see [8]) was the first investigator to show
the value of considering a population response as a
representation of motor parametets. Using monkeys,
he measured angular position, angular velocity, torque
and change in torque during a simple wrist movement
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and found a poor or inconsistent relationship between
these parameters and the discharge patterns of indi-
vidual -motor cortical cells. This relationship improved
when the weighted contributions of 5-7 cells were com-
bined through the task. The evidence that parameters
were encoded in groups of cells was further substan-
tiated by Georgopoulos and colleagues [9] who found
that motor cortical activity was broadly tuned to move-
ment direction when recorded from monkeys perform-
ing planar reaching movements. This novel experiment
examined movement direction explicitly for multi-joint
movements in a-center—out task. The function between
discharge rate and direction was described with a co-
sine function characterized by a ‘preferred direction’
of movement where the cell fired at its maximal rate.
This simple, coarse relationship spanned all movement
directions and suggested that many cells were active
simultaneously during each movement. These findings
were remarkable because the mechnics of the freely
moving arm are quite complex, yet the relationship
between motor cortical discharge rate and the direc-
tion of movement is simple and robust. A population
algorithm based on weighted vector contributions in
each cell’s preferred direction was used successfully to
predict the direction of arm movement [10]. These
findings were elaborated by tasks performed in three-
dimensional space [11-13], with static loads [14] and
in adjacent workspaces [15]. The responses of cerebel-
lar cells [16], parietal [17,18] and premotor (D Karluk,
TJ Ebner, Soc Neurosci Abstr 1989, 15:787; [19]) cor-
tical cells were studied during the performance of the
center—out task and all were found to follow the same
cosine tuning function.

The ability of these cells to predict movement trajectory
was tested explicitly when the directional properties of
motor cortical cells were used to construct population
vectors during drawing movements [20°]. A times series
of population vectors predicted the changes in direc-
tion and speed of the hand continuously as figures were
drawn. The shape of the drawn figure was recovered by
adding the population vectors tip-to-tail. The ability to
extract accurate trajectory information from cortical ac-
tivity not only shows that this information is present in
motor cortical activity but provides insight into the pro-
cess underlying drawing. Psychophysical properties such
as the 2/3 power law (where speed and curvature are
inversely related) and trajectory segmentation are evi-
dent in this neural representation, and show that these
properties are the result of central processing [21°]. The
latency between the population vector and the corre-
sponding portion of the trajectory is variable, for ex-
ample, as spirals are drawn, the latency in the outer,
straighter portions of the spiral is near zero or negative
and at a threshold level of curvature it rises quickly to
100-120 ms. This has been interpreted as a sign. that the
trajectory formation process bypasses the motor cortex
when movement direction is constant during drawing,

Information flow

The widespread observations of broad tuning in different
neuronal (brain) systems and the ability to detect external
parameters using population algorithms in these systems
suggest the exciting possibility that we may soon begin
to understand how information about the external world
is transformed to a state where it is used to trigger and
control movement. In the case of volitional movement
this process may be considered cognitive. The flow of vi-
sual information to motor cortical areas will be reviewed
as an example of this process (see also Fig. 1).

Visual information has been described as projecting
through the neocortex in separate pathways [22¢¢]. Spa-
tial information flows from layers 4b and 6 of cortical
areas V1 and V2 to the medial temporal area (MT) in a
dorsal pathway. The pathway then projects to the me-
dial superior temporal area (MST). The ventral pathway
is believed to be involve cortical areas V1-V2, V4 and
the infereotemporal area (IT), structures that are involved
in object identification.

Cells in MT are broadly tuned to the direction of visual
motion. Dot patterns moving in different directions gen-
erate discharge patterns that when mapped to direction
result in tuning functions that are very similar to those
found in the motor cortex for different directions of arm
movement [23]. Whether these neuronal responses can
be summed to produce population responses or oper-
ate individually in a ‘winner-take-all’ mechanism [24]
is presently somewhat controversial. MT cells project to
MST. Cells in the dorsal portion of this area, MSTd, re-
spond to more complex motions composed of rotation,
expansion, and translation [25). These are components
of ‘visual flow’, that is, information experienced when
moving through the environment. The responses of indi-
vidual cells are related to combinations of the three com-
ponents and have been fit with coarse tuning functions in
a way that suggests that many cells respond simultaneo-
usly as this type of visual information is processed [4*¢].
For instance, when the random dot patterns moved in
a spiral motion (combination of expansion/contraction
and rotation), many of the cells responded with high dis-
charge rates and would respond to other motions with
lower rates. Displaying these patterns in other portions
of the receptive field did not have a great influence on
the cellular responses, suggesting that they were position
invariant. Positional invariance is not a property of MT
cells and probably is a function of the integration of MT
inputs in MST. In addition to visual flow, MST discharge
could be used to process information during manipula-
tion because these cells respond when an object in the
foreground moves against a background.

MST and MT project to cortical area 7a and to areas
within the intraparietal sulcus (lateral intraparietal area
[LIP] and ventral intraparietal area [VIP]). Cells in these
regions respond broadly to spots of light moving from
the periphery toward the fovea (at which point the cells
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Fig. 1. Summary of connections between visual cortical areas (V1, V2) and primary motor cortex (M1). Abbreviations: Cb, cerebelium; Cing,

cingulate cortex; PN, pontine nuclei; pSMA, pre-SMA; VPLo, oral portio

stop firing) in different directions [5]. When applied to
these directional responses, the population vector algo-
rithm predicted accurately the direction of the moving
stimulus. These cells probably play a role in the visual
guidance of the hand as it approaches a foveated target. In
an experiment where monkeys gripped and manipulated
different objects, the responses of cells in this area were
modulated preferentially for specific types of grip [26].
Although more active with vision, many of these cells
were also responsive in the dark. Cell responses in VIP
were also broadly tuned to moving stimuli [27¢]. Some
of these responses were selective for movement directed
toward a specific spot on the face,

Many of the areas in and around the intraparietal sulcus
project to the frontal cortex. Some of these projections
terminate in the premotor areas [28]. Output from the
posterior-medial superior parietal lobule projects to the
dorsal premotor cortex (PMd). These parietal regions in-
clude the medial surface of the hemisphere (7m) and the
medial wall of the intraparietal sulcus (MIP) [29,30°].
Area 7m receives input from parietal-occipital cortex
(PO), an area that processes visual stimuli in the pe-
ripheral field [31-33]. MIP cells have visual and motor

n of ventral posterior lateral thalamus.

responses [34,35]. PMd also receives cortical input from
supplementary motor area (SMA) and cingulate areas 23
and 24 [29].

Cells in PMd are broadly tuned to the direction of arm
movement with the same tuning function as cells in pri-
mary motor cortex (M1) [36°]. As with M1 activity, a
population algorithm applied to PMd activity formed
accurate neural trajectories (A Kakavand, AB Schwartz,
Soc Neurosci Abstr 1992, 18:502). One characteristic of
these cells is that a subpopulation appeared to be in-
hibited for curved trajectories [37]. These cells tended
to have maintained discharge during an instructed de-
lay task and were classified as set-related [38—40]. This
activity was dependent on the characteristics of the in-
structed movement, but independent of the visual cue.
This contrasts to the findings in SMA where the set-re-
lated cells are better related to the visual stimulus than
the instructed movement.

Cells in ventral premotor area (PMv) receive their major
cortical input from the fundus of the intraparietal sul-
cus — area VIP [29]. This parietal area receives input
from MT and MST and contain cells responsive to vi-
sual motion. Prefrontal area 46 also projects heavily to
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Fig. 2. Representation of cortical activ-
ity and behavior. For visualization, a
three-dimensional parameter space is il-
lustrated for the parameters speed, moti-
vation and position. Vector A points to a
cell in this space and vector B points to
a behavior comprising a set of values for
each parameter. During this behavior, the
cell pointed to by vector A should fire at
a rate that depends on the cos 8. See text
for further description.

this region [41°]. PMv cells have set-related activity but
their responses were not as dependent on the action to be
taken as PMd cells [40]. PMv cells may be gaze specific,
in that their activity changes when static stimuli are fix-
ated in different parts of the visual surround [42¢], but
seem to be gaze independent for moving stimuli [43].
These cells also are preferentially responsive to particular
arm trajectories but are less pervasive than those in M1,
SMA or PMd [37].

The ventral visual pathway terminating in the anterior
infererior temporal cortex is thought to be specialized
for pattern and object recognition [44]. Population vec-
tors based on anterior infereotemporal area (AIT) cells,
tuned to specific physical features of the face, were con-
structed and selective for particular faces. The analysis
used multi-dimensional scaling to group the responses
which were broadly tuned to a combination of physical
features [6]. Cells in IT project to area 12 inferior of the
principal sulcus in the prefrontal cortex [45°]. Cells in

this region respond to foveal input and project to pre-
SMA [46,47] and PMv [48].

Prefrontal cells also receive input from the dorsal stream
[49]. Axons from area 7a terminate in area 46, LIP

projects to area 8a and area 45 receives input from area
7b.

Area 7 output can also reach motor cortical areas through
a cerebellar circuit [50,51]. There is a large projection
from this region to the pontine nuclei, lateral cerebellar
cortex, dentate nucleus, ventrolateral thalamus and the
primary and premotor cortices. Cerebellar cells are sen-

sitive to moving visual stimuli and are also broadly tuned
to the direction of arm movements [16].

Conclusions

There is no direct route from visual cortical areas to M1,
There are, however, several pathways through ipsilateral
cortical sites and subcortical structures from visual ar-
eas around the intraparietal sulcus to M1. This route
is characterized by motion processing of visual stim-
uli. Visual information associated with object recogni-
tion may reach the motor cortex more indirectly from
a pathway projecting from IT to prefrontal, then pre-
motor and supplementary cortices. However, caution
must be used when interpreting this type of anatomi-
cal routing. First, almost all of the premotor cortical
areas have direct spinal projections independent of M1
[52,53]. Second, functional imaging studies repeatedly
find that these pathways do not function independently
[54¢*]. Third, it is difficult to assign discrete functions to
particular anatomical substrates as the properties of their
cell activity during movement are similar [55-57].

With these problems, how might we gain a realistic un-
derstanding of the processing responsible for the devel-
opment of volitional action based on visual stimuli? It
is likely that parameters used in this process are repre-
sented with broad tuning functions in every structure of
the pathway. One approach would be to record the activ-
ity of many cells simultaneously from different structures
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in the pathway. Each cell could be mapped analytically
to an n-dimensional space based on its response to a va-
riety of parameters. The dimensions of this space can
be any aspect of the experiment that can be measured,
even those that are relatively abstract [6]. It is likely
that cells mapped this way will not fall along partic-
ular axes. Rather, they should be distributed homoge-
nously through the parameter space, as these cells en-
code multiple parameters [4°°,36°,58]. If this mapping
were done with a large sample from many of these struc-
tures, a time-series of n-dimensional population vectors
through this space calculated at intervals throughout the
task should reflect accurately the processing subserving
the volitional action.

The response of each cell can be represented as a point
in the parameter space (Fig. 2). The coordinates of this
point could be considered the coefficients of multiple
regression performed on each of the parameters and
the cell’s discharge rate. When normalized, these co-
ordinates could function as the direction numbers for
an n-dimensional vector, A. A behavior can be de-
scribed by a set of parameters with specific values and
these normalized values can be used to describe another
vector, B. The discharge rate of the cell would be the
projection of vector A onto vector B calculated by tak-
ing their dot product. A population vector could be
built weighing each cell vector (vectors Aj.....A,) and
summing their values. The resultant population vector
will point to the behavior, if the cell responses are in-
dependent, homogenously distributed in the space and
broadly tuned to each parameter. If cells within a struc-
ture are involved in movement generation in a similar
way, they should form clusters in this space and the
evolution of these clusters throughout the task could
explain how cellular activity in one structure interacts
with that of another. This is one example of a new va-
riety of analysis (see [54¢%,59°]) that can be applied to
distributed systems.
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