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SUMMARY 

I. Monkeys were trained to trace sinusoids with their index 
fingers on a planar surface. During this task, both the direction 
and speed of movement varied continuously. Activity of individ- 
ual units in the precentral gyrus contralateral to the moving arm 
was recorded as the task was performed. These cells responded to 
passive movement of the shoulder and/or elbow. The relation 
between discharge rate and movement direction for these individ- 
ual cells could be described with a cosine tuning function. 

2. Data recorded as the sinusoid was traced were divided into 
100 bins as each cell was studied during the experiment. In each 
bin, the activity of a particular cell was represented by a vector. 
The vector (“cell vector”) pointed in the direction of finger move- 
ment that corresponded to the highest rate of neuronal discharge. 
This direction, referred to as the preferred direction, corresponded 
to the peak of the cosine tuning function. The direction of the 
vector was constant between bins, but the magnitude of this cell’s 
vector was a function of the instantaneous discharge rate. 

3. This cell vector is a hypothetical contribution of a single cell 
to the population response comprised of 554 similarly derived 
vectors from different cells. The population response was repre- 
sented as the vector that resulted from forming the sum of the 
vector contributions from the individual cells. A separate calcula- 
tion was made for each bin, resulting in 100 population vectors for 
each sinusoid. 

4. Within a given time series of population vectors, their 
lengths and directions varied in a consistent relation to the tangen- 
tial velocity of the drawing movement. Therefore these vectors are 
representative of the movement trajectory. Each increment of a 
trajectory was predicted by a population vector that preceded it by 
- 120 ms. These findings suggest that trajectory information is 
encoded in an ongoing manner in the motor cortex using a relative 
coordinate system that moves in conjunction with the finger. 

INTRODUCTION 

Previous investigations examining volitional arm move- 
ments have shown that the activity of most task-related neu- 
rons in the precentral cortex is strongly influenced by the 
direction of movement. This can be represented by a cosine 
tuning function that spans all directions of movement. 
Thus, for any given change of movement direction, the fre- 
quency of discharge in many cells will change simulta- 
neously. A population vector model has been used to repre- 
sent the emergent directional information from this group 
of cells. Population vectors predict accurately the direction 
of reaching movements in two- and three-dimensional 
space (Georgopoulos et al. 1983, 1988). 

The purpose of the present experiment was to examine 
the temporal characteristics of motor cortical activity 
within an arm movement. The trajectory of movement is 
the time pattern of limb displacement. Because trajectory is 

explicitly specified in drawing movements, this class of 
movement is ideally suited for testing the hypothesis of this 
study: is trajectory represented in the temporal pattern of 
unitary activity in motor cortex? Sinusoid drawing was cho- 
sen because both the speed and direction of movement 
change continuously as the figure is drawn. Because the 
method in this study utilizes vectors to represent the trajec- 
tory, both the direction and the magnitude (equivalent to 
speed in this case) of the vector must be encoded in the 
cortical activity for an affirmative answer to the hypothesis. 
In a previous paper that detailed the characteristics of sin- 
gle-cell activity during this task, it was shown that much of 
the activity pattern could be accounted for by movement 
direction (Schwartz 1992). Speed of movement accounted 
for a smaller portion of the discharge pattern. Neither the 
tuning function relating direction to discharge nor the 
speed-discharge relation was precise enough to accurately 
predict the movement trajectory. The speed-discharge pat- 
tern was most robust when the direction of movement was 
near the cell’s preferred direction. In contrast, the popula- 
tion vector techniques used in the present paper show that 
an accurate representation of both direction and speed 
emerge from the population. Speed is directly proportional 
to the magnitude of the population vector. Because both 
parameters are simultaneously represented in the popula- 
tion vector, this vector is a predictor of the tangential veloc- 
ity generated in this task. The shape of the drawn figure can 
be extracted from the calculated time series of population 
vectors. 

METHODS 

The general methods used in this study, including those for the 
surgical, recording, and data acquisition procedures as well as the 
behavioral paradigm, were detailed in a previous report (Schwartz 
1992). 

Behavior and recording paradigm 
Rhesus monkeys were trained to trace with their index fingers 

on a touch-sensitive computer monitor. The monkeys became 
proficient at two tasks. The center-out task was a set of condi- 
tions that required the animal to begin a movement in the center 
of the screen and move directly to one of eight targets arranged at 
equal spatial intervals around a circle with a 6-cm radius. Direct 
movements to each of the eight peripheral targets were repeated in 
a random order five times per experimental run. The monkeys 
performed the other task (tracing task) by tracing horizontally 
oriented sinusoids across the screen. The sinusoids consisted of 
five different combinations of amplitude and spatial frequency. 
Each combination was traced both leftward and rightward across 
the screen for a total of 10 different experimental classes. The trial 
began with the appearance of a target circle at one margin of the 
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screen. When the animal held its finger in this target, one of five 
sinusoids would then be presented, originating at the target circle. 
The target would jump along the figure and the animal would then 
be required to move its finger along the screen to this location 
within - 150 ms. The animals learned to perform smooth, grace- 
ful movements that were within 1 cm of the projected figure. 
Movement speed was determined by the animal, because the tar- 
get circle jumped to the next location along the figure as soon as it 
was acquired by the animal. After training, a chronic recording 
chamber was implanted in the skull over the proximal arm area of 
the motor cortex contralateral to the arm used for the task. Single 
units that responded when the shoulder and/ or elbow was pas- 
sively manipulated, that were active in the task, and that could be 
fit with a cosine tuning function during the center-out task were 
included in the analysis. 

Analysis 

Spike data generated from five repetitions of movements to 
each target recorded during the center-out task were regressed to 
a cosine formula, as described previously (Schwartz 1992). This 
formula characterized the pattern of discharge across all directions 
of movement. Tuned cells, by definition, had the highest discharge 
rate when the finger moved in the cell’s preferred direction, and 
had progressively lower rates for movements in directions more 
remote from this direction of peak firing. A set of rasters from a 
single cell illustrates this relation in Fig. 1 A. These rasters arranged 
around a center start position and located in the direction of move- 
ment show that this cell tended to have high discharge rates when 
the movement direction was down and to the left. The preferred 
direction determined from the regression analysis was 254’ (&wn 
and I&IX&) in the coordinate system used in this analysis. Histo- 
grams of cell activity during the sinusoid tracing were calculated 
by dividing each trial into 100 bins. The experimental epoch over 
which this was calculated started 120 ms before the finger moved 
from the initial hold position and ended 120 ms before the task 
was completed. Fractional interspike intervals were calculated for 
each bin and averaged across repetitions. The fractional intervals 
were converted to discharge rates by dividing each bin by the aver- 
age bin duration ( average trial time / 100). Population vectors, pt, 
were calculated for each bin by taking a unit vector, Ci, pointing in 
the preferred direction of each cell, i, and setting its magnitude 
with the weighting function 

Di, - Di 
Mii t = ’ 

’ Dm,,i - Oi 

where Di t is the discharge rate in bin t of cell i, Di is the geometric 
mean for cell i and I&xi is the maximum discharge rate for the 
cell. The population vector was calculated by taking the vector 
average of the N-weighted cell vectors 

A histogram of firing rates during the tracing task from the cell 
represented in Fig. 1 A is shown as an example in Fig. 1 B. The unit 
vector is weighted by M’i,t, and the time series of weighted vectors is 
shown on the righf. The small arrow shows where the movement 
began ( - 120 ms from the beginning of the spike data). The popu- 
lation vector for the first spike data bin was constructed by sum- 
ming weighted vectors from 544 different cells, shown on the right 
of Fig. 1 C. The small arrowhead marks the contribution of the cell 
shown in Fig. 1, A and B, whereas the heavy line represents pt, the 
population vector for the first bin. Notice that this population 
vector, constructed 120 ms before the movement began, points in 
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FIG. 1. Population method. A: rasters derived from the center-+out 
task were used to calculate a cell’s preferred direction. Each raster repre- 
sents 5 repetitions of a movement from the center of the figure to a target 
located at the raster’s position. The rasters are aligned to movement onset. 
The average discharge rate during the reaction and movement time was 
greatest for movements down and to the left. The Euclidean coordinate 
system used throughout this paper is oriented with 0” along the positive x 
axis and 90” upward. The preferred direction of this unit was 254”, and is 
represented by the arrow in the middle of the figure. This procedure yields 
a unit vector pointing in the cell’s preferred direction. B: instantaneous 
discharge rate during the sinusoid tracing was calculated in 100 bins as 
represented in the histogram. Spike data were aligned to a sync point 120 
ms before the finger exited the start location on the touchscreen. The unit 
vector weighted by the discharge rate was used to calculate a cell vector for 
each bin. C: same procedure was carried out for all 554 cells in the popula- 
tion. The result for the 1 st bin of class 1 is represented as a cluster of cell 
vectors. The population vector (not to scale) resulting from the vector 
addition of the 554 clusters is represented as the heavy arrow. Small arrow: 
vector contribution of the unit displayed in A and B. The direction of the 
population vector matches the initial direction of the trajectory. 

the same direction as the initial movement direction shown on the 
Zej of Fig. 1 C. 

The time series of population vectors could be added tip-to-tail 
to create a neural representation of the trajectory. To compare this 
representation with the actual trajectory, the x and y  components 
of the neural trajectory were normalized to the finger trajectory. 
This was carried out for each class using the maximum and mini- 
mum x and y  components of each time series to define the normal- 
ization factors 

x = 
A-POP,,, - XPOPmin 

norm xdispmax - xdiLypmin 

Ynorm = 
-VP”Pmax - YPOPmin 

YdisPmax - ydisp,i, 

These x and y  components of each population vector were then 
divided by the respective constants to convert their units from 
spikes per bin to centimeters per bin. 
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FIG. 2. Population clusters. Clusters consisting of 554 cell vectors are displayed in serial order (left to right and top to 
bottom) for the class 1 sinusoid. Heavy lines: population vectors. Small symmetrical clusters yield short population vectors, 
and these tend to occur for horizontal directions corresponding to slow speeds. 

RESULTS 

A series of 100 population clusters for the class 1 sinusoid 
(amplitude = 3 cm, 3 cycles per screen, drawn rightward) is 
shown in Fig. 2. The clusters are presented in temporal 
order from left to right and top to bottom. The thin lines 
represent the cell vectors from each of the 554 neurons that 
contribute to the population vector. The first cluster was 
calculated 120 ms before the finger moved from the start 
location. In general, the length of the population vector is 
related to the asymmetry of the cluster. The directions and 
magnitudes of the population vectors change gradually. 
The shortest vectors are always pointing horizontally and 
have symmetrical, compact clusters. The finger was moving 
horizontally only at the peaks of the sinusoids, and this was 
the region of the figure where the curvature was highest. 
Because curvature and speed are inversely related, the short 
population vectors that emerge from the symmetrical clus- 
ters are consistent with low movement speeds. The tem- 
poral variation in population vector direction and magni- 
tude is illustrated in Fig. 3 for the 10 classes of sinusoids. 
This pattern can be compared directly to the series of tan- 
gential velocity vectors in Fig. 4. It is apparent that both the 
directions and magnitudes of the population vectors are 

quite similar to those of the corresponding velocity vectors. 
In classes l-3 and 6-8, the radius of curvature at the peak of 
the sinusoids was small and the tangential speed was also 
small. The metrics of the population and velocity vectors 
corresponded between classes as well as within the temporal 
sequence of a given class. 

The relation between the population vector direction and 
the direction of the velocity vectors was examined quantiti- 
vely by cross correlation. Usually, standard correlation tech- 
niques cannot be applied to directional data because the 
coordinate system is circular, i.e., 359O is only 2O from 1 O. 
However, the coordinate system used in this experiment, 
with 0’ along the positive x axis and 90° along the positive y 
axis, along with the fact that only two quadrants were tra- 
versed as each horizontal sinusoid was traced, made this 
standard comparison possible. For the sinusoids traced 
from left to right (classes 6- lo), the fourth and first quad- 
rants were traversed, and, to make the coordinates continu- 
ous, the fourth quadrant was remapped from 270 through 
360° to -90 through 0’. Thus classes 6- 10 have movement 
directions that range from -90 to +90”. Classes l-5 tra- 
versed the second and third quadrants (90-270”) and were 
not remapped. The movement and population vector direc- 
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4 FIG. 3. Population vectors. The population response for 
each sinusoid class is represented in each sequence of 100 
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vectors. The class number beside each sequence is located at 
the origin. Classes l-5 were drawn from left to right, and 
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tions are compared for each sinusoid class in Fig. 5A. In this 
figure, the population vector direction is shifted by 120 ms 
to align better to the direction of movement. The corre- 
spondence between the two traces is very good, with minor 
differences for classes l-3 and 6-8 near the beginning of the 
task. The correllograms for this directional comparison are 
shown in Fig. 5C. The peak correlations have values from 
0.9 1 to 0.96 and occur with a lag of 102- 136 ms. Using the 
lag for each class, the traces shown in Fig. 5A were shifted 
and subtracted. The resulting differences are displayed in 
Fig. 5 B ( note the scale difference between 5, A and B) . The 
largest differences occurred near the beginning of the move- 
ment for classes l-3 and 6-8. 

The same analysis was carried out for speed (length of the 
velocity vector) and the magnitude of the population vec- 
tor. The maximum population vector length for each class 
was normalized to the largest speed for the corresponding 
sinusoid. These traces, with the population vector lengths 
shifted by 120 ms, are shown in Fig. 6A. Again, the corre- 

spondence within the pairs of traces is very good. There is 
little variation in speed for classes 4 and 9 because these 
sinusoids were of low amplitude with a large radius of cur- 
vature near the peak. The correllograms displayed in Fig. 
6C have peak values that range from 0.50 to 0.86 and have 
lags of 102- 15 1 ms. After the traces were shifted by their 
lags and subtracted, the resulting differences were evenly 
distributed throughout each trial (Fig. 6 B). 

Because both direction and speed were well represented 
in the series of population vectors, it was possible to con- 
struct “neural trajectories” by adding the population vec- 
tors for each class tip-to-tail. The result is plotted on the 
rig& of Fig. 7, with the actual trajectories plotted on the left. 
Except for the initial portions of classes l-3 and 6-8, the 
neural trajectories are quite similar to those of the finger. In 
the classes with the aberrant initial portions, the distortion 
is largest at the first peak of each sinusoid. This corresponds 
to the largest difference angle for these classes displayed in 
Fig. 5 B. 

Movement Vectors 
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FIG. 4. Movement vectors. The tangential velocity vectors 
are presented in the same format as the population vectors of 
Fig. 3. These vectors derived from finger movement corre- 
spond closely to the population vectors. The 1st vector was 
calculated from the finger positions on exit from the start loca- 
tion. 
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FIG. 5. Population vector direction vs. movement di- 
rection. A: population vector direction is plotted as the 
heavy line and movement direction as the light line. The 
abscissa is normalized movement time ( 100 bins). The 
numbers to the I@ of each trace are the class numbers. 
These traces are derived from the data illustrated in Figs. 
3 and 4. The vertical calibration bar represents 90”. For 
classes l-5, the y values of the figure range from 90 to 
270”. The values of classes 6- 10 range from -90 to 
+90”. Population vector direction corresponds closely to 
movement direction. B: traces in A were shifted by their 
cross-correlation lags (Fig. 5C) and subtracted. The dif- 
ferences (population - movement) are largest at the be- 
ginning of the task. The scale is magnified relative to A 
(calibration bar = 90” ) . C: cross-correlograms of move- 
ment direction relative to population vector direction 
show that the 2 were well correlated and that the lag for 
each class was near 120 ms. The time scale along the 
abscissa was calculated from the normalized data by 
equating the average duration for each class to bin 100. 
The calibration bar is r = 1 .O. 
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The variability in the performance of the task was calcu- 
lated with a bootstrapping technique (Diaconis and Efron 
1983; Georgopoulos et al. 1988). Selections from the data- 
base of 554 experiments were made randomly 554 times; a 
particular selection could be made more than once. Each 
selection consisted of 100 bins of normalized x-y touch- 
screen data acquired as the sinusoid was traced. The se- 
lected data were used to calculate an average trajectory for 
each sinusoid class. This process was repeated 100 times, 
and the resulting 100 trajectories were rank ordered by their 
root-mean-squared difference from the overall mean trajec- 
tory. The trajectory that was ranked as 95 represented the 
confidence interval containing 95% of the variability. Each 
velocity vector of this trajectory was broken into x and y 
components and displayed in Fig. 8. An ellipse was plotted 
for each bin of the mean trajectory. The axis of the ellipse in 
the x dimension represents the variability in the x direction, 
and the y axis represents y variability. The variability was so 
small relative to the metrics of the trajectory that each el- 
lipse was magnified by a factor of 20. The variability of the 
trajectory was greatest in the portions of the sinusoid with 
greatest curvature. 

620 

The same technique was used to measure the variability 
of the neural trajectories. Selections were made 554 times, 
and a time series of 100 population vectors was calculated 
for each sinusoid class. This process was repeated 100 
times, resulting in 100 neural trajectories that were rank 
ordered in the same way as the finger trajectories. The re- 
sulting variability in the x and y dimensions was repre- 
sented by ellipses located at the end of each preceding mean 
population vector. The ellipses representing the 95% confi- 
dence interval in Fig. 9 were magnified 5 times relative to 
the mean neural trajectory. The variability tended to 
change by region through the trajectory-large ellipses were 
in the same part of the trajectory. There was also a tendency 
for the largest variability to occur at the beginning of each 
movement. Within the neural trajectories, the pattern of 
variability differed from the pattern observed in the finger 
trajectories. 

DISCUSSION 

In general, volitional movement is associated with a set 
of parameters that change continuously throughout the 
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FIG. 6. Population vector length vs. movement 
speed. A : normalization factor was found when the max- 
imum population vector magnitude [ SQRT(x2 + -v’)] 
for each class was divided by the maximum speed en- 
countered in that class. The population vector length 
e----> was multiplied by this factor and shifted by 120 
ms before being matched to the finger speed (- - -). The 
calibration bar is 50 cm/s. B: population trace was 
shifted by its correlation lag (Fig. 6C) and the speed trace 
subtracted. The differences were evenly distributed 
through the task. The scale is the same as in A. C: corre- 
lograms showing the correlation between the 2 traces 
were centered near a lag of 120 ms. The vertical bar is r = 
1 .o. 
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movement. Drawing is characterized by its path or trajec- 
tory, and the production of this path in time can be com- 
pletely described with the parameters of direction and 
speed. The purpose of this study was to determine whether, 
and how well, these parameters were encoded in the activity 
of motor cortical neurons. 

Previous research has shown that the average activity of 
individual neurons of the motor cortex varies with the con- 
stant direction of straight arm movements (Georgopoulos 
et al. 1982) with a cosine tuning function between move- 
ment direction and discharge rate. A recent study 
(Schwartz 1992) showed that this relation was valid for 
drawing movements when direction and discharge activity 
were considered instantaneously. To test the hypothesis 
that movement is accurately represented in the motor cor- 
tex as a figure is drawn, it would be desirable to use the 
cortical activity to predict the actual movement. The tun- 
ing function for individual neurons, however, cannot by 
itself be used to predict movement direction because two 
directions are coded for each discharge rate (except at the 
peak) and the function is broad, spanning the entire direc- 
tional domain. In contrast, the population vector algorithm 

utilizes the preferred direction derived from the tuning 
curves of many individual cells and does yield an accurate 
prediction of movement direction. Previously, population 
vectors derived from neuronal activity were shown to pre- 
dict well the direction of straight reaching movements 
(Georgopoulos et al. 1983; Schwartz et al. 1988). Popula- 
tion vectors generated continuously during a pointing task 
in three-dimensional space were shown to represent well 
the trajectories of these relatively straight movements 
(Georgopoulos et al. 1988). A movement trajectory can be 
described by a series of tangent vectors, each of which 
points in an instantaneous direction and has a magnitude 
proportional to the speed of the movement. These vectors 
were found by dividing the movement trajectory into seg- 
ments at equal temporal intervals. The resulting series of 
vectors was then compared with the corresponding series of 
population vectors, which were shown to predict well both 
direction and speed as they changed continuously through 
the movement. 

In this algorithm, each cell makes a contribution to the 
population in the cell’s preferred direction. This contribu- 
tion is weighted by a factor proportional to the discharge 
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FIG. 7. Trajectories. The population vectors of Fig. 3 and the velocity 
vectors of Fig. 4 were added tip-to-tail to form neural (right) and finger 
trajectories (left). The procedure for normalizing the population vectors is 
described in the text. Class labels are positioned at the origin of each trace. 
The calibration bars are 2 cm. 

rate at the instant the population vector is calculated. Direc- 
tional information encoded by individual cells is summed, 
resulting in a population vector oriented in the direction of 
movement that will occur - 120 ms later. Speed, as com- 
pared with direction, is more poorly encoded in single cells, 
yet the neuronal population as a whole accurately encodes 
speed information. The speed at a given point in the trajec- 
tory is proportional to the length of the population vector. 
In a previous report (Schwartz 1992)) an analysis of single- 
unit activity showed that speed information was best en- 
coded when the direction of movement was near the cell’s 
preferred direction. In the population algorithm, the vector 
contribution of a cell to the population vector is large when 
the movement is in the cell’s preferred direction. When this 
condition occurs, the exact contribution will be biased by 
the encoded speed-the cell’s contribution will be less for 
slower movements and greater for faster movements in the 
preferred direction. The cluster of cell vectors will be more 
round for slow portions of the movement because contribu- 
tions represented by vectors oriented in the direction of 
movement will be shorter and more like the vectors ori- 
ented in other directions. In contrast, more elongated, asym- 
metrical clusters will be associated with faster portions of 
the movement and will result in longer population vectors. 
The encoding of speed is an emergent property of the popu- 
lation vector algorithm. 

These findings also suggest that the trajectory-related in- 
formation found in the motor cortex is in a specific refer- 
ence frame. The tangential velocity vectors are very similar 
to the population vectors calculated within the drawing 
movement. Thus the coordinate frame depends on the tra- 
jectory tangent, moving in time and space with the finger 

during the task. If the reference frame had a constant origin, 
for instance at the shoulder, the series of population vectors 
would be quite different: the vectors would all fan out from 
the same origin and their directions would not change peri- 
odically. Because the instantaneous location in the trajec- 
tory is a necessary initial condition and the population vec- 
tor-precedes the actual movement, an ongoing cumulative 
history of the previous calculations seems to be carried out. 
This conclusion is based on the idea that direction is a rela- 
tive parameter measured from a reference point. The data 
show that the direction of the population vectors when 
measured relative to the moving finger match the tangential 
velocity vectors. This was also tested for straight arm move- 
ments made through three-dimensional space in a cen- 
ter-out task where the same cells were recorded as the 
animal performed the task with three different arm orienta- 
tions (Caminiti et al. 1990). The task was carried out in 
three different workspaces contiguous in the horizontal di- 
mension and required a shoulder rotation of -20’ about 
the vertical axis for adjacent spaces. Population vectors cal- 
culated in each workspace predicted the hand direction 
equally well. The preferred directions of individual cells 
were found to be biased by shoulder orientation; the popula- 
tion of motor cortical neurons as a whole had a slight ten- 
dency ( r < 0.5) to change preferred directions in the hori- 
zontal direction by - 12O for movements in adjacent work- 
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FIG. 8. Trajectory variability-classes l-3. A bootstrap technique, de- 
scribed in the text, was used to calculate the variability for each bin of the 
finger trajectory. The x and y  axes of the ellipses represent the 95% confi- 
dence interval at x and y  at each position. Variability was largest at the 
peaks of the sinusoid. Each ellipse was scaled by a factor of 20 compared 
with the trajectory. 
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FIG. 9. Neural trajectory variability-classes 1-3. The bootstrap tech- 
nique was applied to the population vectors. There was a tendency for the 
variability to be greater at the start of each trace. Adjacent points within a 
region of the trace have similar variability. The ellipses were magnified by a 
factor of 5 relative to the trajectory. 

spaces. Although the preferred directions of individual cells 
may be related to shoulder posture, this was not manifest in 
the population vectors. The population vectors were always 
oriented in the same direction as the hand movement rela- 
tive to the initial location of the hand. 

The evolution of a volitional reaching task may be de- 
scribed as a sequence of coordinate transformations from a 
visual space to a joint-centered coordinate system (Pellion- 
isz and Llinas 1979). For instance, Flanders et al. ( 1992) 
have suggested that, in a pointing task, the position of the 
target is first represented in a retinotopic coordinate system. 
An analysis of end-point errors for movements carried out 
in the dark shows that the psychophysical coordinate sys- 
tem is centered at the shoulder. Within a movement, target 
information from the retina is transformed sequentially to a 
head-centered, then to a shoulder-centered coordinate 
frame. Once transformed to the shoulder frame, the target 
information would then be in the same coordinate system 
as kinesthetically derived arm position information. Both 
types of information would then be joint centered and 
could be used to displace the arm. 

This sequential process may be different for drawing 
movements, for which there are no discrete targets. The 
traced figure is probably produced by a process that relies 
on continuous visual guidance. The distance between the 
finger and the next desired location along the figure would 
then be the relevant input information. According to 
Flanders et al., this condition could “short-circuit” the se- 
ries of coordinate transformations described above. The 
present results suggesting that information in the motor 
cortex is organized in a finger-centered coordinate system 

would support this idea. Alternatively, this information 
may be the result of a series of transformations that oc- 
curred before this representation was formed. 

A characteristic distortion in the neural trajectories oc- 
curred at the beginning of each task, evident particularly in 
the six classes of sinusoid possessing the highest curvature. 
Most of the distortion was localized to the first peak of the 
figure. In this region, the population vectors were very short 
because the finger was moving slowly. As shown in Fig. 5, 
the difference between the direction of the population vec- 
tor and that of the tangential velocity vector was largest in 
this region. Short vector magnitudes might be expected to 
yield less accurate directions. For example, the length of the 
fifteenth population vector in the class 2 sinusoid is 0.147 
spikes/s. This is a very small value for the rate of discharge 
(derived from the population), and is smaller than the 95% 
confidence interval calculated from the bootstrap for that 
bin. (0.22 spikes/s, Fig. 9). The difference between the di- 
rection of the population and tangential velocity vector is 
greatest at this point (Fig. 5 ) ; the directions of the vectors 
before and after this matched better. Thus it is likely that 
the population algorithm may have limited accuracy for 
regions of the trajectory with high curvature (combination 
of slow speed and rapid change in direction). This could be 
a substrate for the isogony principle (Lacquaniti et al. 
1983 ) describing the inverse relation between drawing 
speed and curvature. Perhaps the less distinct directional 
“answer” provided by the neuronal population and repre- 
sented by the short population vector is indicative of a limi- 
tation of the system that controls accurate arm movement. 
This concept is supported by the increased variability in the 
more curved portions of the trajectory (Fig. 8). In general, 
however, the continuous prediction of direction via the pop- 
ulation vector was accurate ( r > 0.9, Fig. 5)) even for re- 
gions of high curvature that occur later in the task. Most of 
the small differences between the predicted and actual direc- 
tion occur within the first 15% of the task. The movement 
actually begins - 120 ms after the first calculated popula- 
tion vector, which is -7-8% of the length of the task. The 
most prominent distortions occur as the displacement of 
the limb begins. This may be a point in the task where the 
sequential transformation in coordinate systems is being 
short-circuited as the hand starts to move and comparisons 
between finger location and the desired drawn figure are 
initiated. 

The psychophysical studies of Flanders et al. also suggest 
that direction and distance may be processed through sepa- 
rate information channels. This distinction has also been 
found in psychophysical studies that examined the force 
produced in targeted isometric tasks (Favilla et al. 1989). 
When considered binwise, speed is the same as instanta- 
neous distance and is coded simultaneously with direction 
in the same motor cortical neurons. These parameters, how- 
ever, are represented differently in the discharge pattern. 
Direction information is broadly encoded throughout its 
entire range. In contrast, speed encoding occurs only for 
those directions of movement near the cell’s preferred direc- 
tion. The distinction between direction and speed is repre- 
sented in the population vector as direction and magnitude. 
This may be an example of separate information channels 
contained in the same physical entity. 
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