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SYNOPSIS

We have recently developed a closed-loop
environment in which we can test the ability of
primates to control the motion of a virtual
device using ensembles of simultaneously re-
corded neurons /29/. Here we use a maximum
likelihood method to assess the information
about task performance contained in the
neuronal ensemble.

We trained two animals to control the motion
of a computer cursor in three dimensions.
Initially the animals controlled cursor motion
using arm movements, but eventually they
learned to drive the cursor directly from cortical
activity. Using a population vector (PV) based
upon the relation between cortical activity and
arm motion, the animals were able to control the
cursor directly from the brain in a closed-loop
environment, but with difficulty. We added a
supervised learning method that modified the
parameters of the PV according to task
performance (adaptive PV), and found that
animals were able to exert much finer control
over the cursor motion from brain signals.

Here we describe a maximum likelihood
method (ML) to assess the information about
target contained in neuronal ensemble activity.
Using this method, we compared the informa-
tion about target contained in the ensemble
during arm control, during brain control early
in the adaptive PV, and during brain control
after the adaptive PV had settled and the animal
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could drive the cursor reliably and with fine
gradations.

During the arm-control task, the ML was
able to determine the target of the movement in
as few as 10% of the trials, and as many as 75%
of the trials, with an average of 65%. This
average dropped when the animals used a
population vector to control motion of the
cursor. On average we could determine the
target in around 35% of the trials. This low
percentage was also reflected in poor control of
the cursor, so that the animal was unable to
reach the target in a large percentage of trials.

Supervised adjustment of the population
vector parameters produced new weighting
coefficients and directional tuning parameters
for many neurons. This produced a much better
performance of the brain-controlled cursor
motion. It was also reflected in the maximum
likelihood measure of cell activity, producing the
correct target based only on neuronal activity in
over 80% of the trials on average.

The changes in maximum likelihood esti-
mates of target location based on ensemble
firing show that an animal’s ability to regulate
the motion of a cortically controlled device is not
crucially dependent on the experimenter’s
ability to estimate intention from neuronal
activity.
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INTRODUCTION

Effort in the field of cortical neuroprostheses
over the last few years has focused on extracting
increasing amounts of information from chronically
recorded neurons /9,10,13,17,25,26,29,30/. The
dominant thinking has been that if it is possible to
read out a subject’s intention, then it should be
possible to implement that intention using alterna-
tive means.

Recently published results have shown that by
providing feedback to an animal about the status of
a neurally controlled device, an animal can use the
device as a tool with as few as ten neurons /26,28,
29/. Since early reports showing that animals could
control the one-dimensional motion of a cursor by
changing the activity of single neurons /5,23.24/,
neuroscientists have anticipated using this to
control the motion of a more complex device, such
as a robotic arm.

Initial reports showing subjects with direct
cortical control over more complex devices have all
relied on biofeedback /3,15,16,26,28/. In animal
studies /3,26,28/, animals were trained to perform
a natural movement that mimicked the device
motion. Investigators recorded brain activity as the
animals moved, and then developed a mapping that
provided for a best-fit prediction of the animals’
behavior from the activity of simultaneously
recorded neurons. This prediction was then applied
to the control of an external device, and in each of
these cases, the animals were able to exert direct
control over the device.

Finely graded generalizable control, however,
waited on one further conceptual advance in the
development of control algorithms /29/. Taylor et
al. showed that device control could be remarkably
improved by loosening the initial constraint which
relies on the mapping between arm movement and
neuronal activity. In that work, a device was
controlled from brain signals using a modified
population vector algorithm that was initialized
by recording from the ensemble as the animal
performed unconstrained point-to-point arm move-
ments. As the animal directly controlled motion of
a cursor from the same signals, however, the
parameters of the population vector were modified
using a supervised learning paradigm. Over the
course of 20 minutes, the adaptive algorithm

quickly retuned the parameters so that task perfor-
mance went from about 50% up to 90% accurate
target acquisition.

There are many possible reasons for the
improvement (see /29/ for details). The population
wvector is known to be sensitive to both the number
of well-tuned neurons and the distribution of tuning
directions. The adaptive algorithm certainly led to
improved tuning functions in many neurons, and
changed their tuning directions by as much as 180
degrees. It 1s also the case that the population
vector selects for neurons that are closely coupled
to arm movements. It might be difficult for the
animal to modulate the firing rates of these neurons
outside the context of arm movements.

In this paper we look at the information about
task performance that is contained in the ensemble
discharge using a maximum likelihood method. We
show that the ability to detect the target of a
movement using only the neuronal firing rates
is enhanced by modifications to the population
vector.

METHODS

Behavioral tasks

We trained macaques to perform a standard
three-dimensional center—out task in a wvirtual
reality environment /22,28/, The animals viewed
stereo images of a spherical cursor and targets
projected onto a mirror placed obliquely a few
centimeters from their face. The virtual images of
the targets were projected into the animal’s work-
space, and the task was to move the cursor into the
target spheres. An initial target sphere would
appear in the center of the workspace. Once the
animal had moved the cursor into this ‘center’
location, a peripherally located target would appear
and the central target disappear. The animal would
then have a limited period in which to move the
cursor into the new target. The eight peripheral
targets all lay about 9 cm from the center location
on the corners of a cube.

The first part of each day's task was the arm-
control task, in which the animal directed motion
of the cursor using unrestrained three-dimensional
arm movements. We monitored the animal’s wrist
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location using an Optotrak motion tracking system
(Northern Digital, Inc.), and used the movement as
monitored by the Optotrak system to control the
cursor motion in real time. The wrist motion
required of the animal was the same as the required
motion of the virtual cursor.

We recorded both the behavior and neuronal
activity as the animal performed this phase of the
task, and used these results to create a cortical
control algorithm that mapped activity in the
neuronal ensemble to motion of the virtual cursor.
At this point, we restrained the animal’s arms, and
the animal was required to control motion of the
cursor by modulating the activity of neurons, In the
early stages of this brain control, cursor motion
was determined entirely by a population vector
based on the arm movements. After 8B-10 brain-
controlled movements to each of the targets, we
began modifving the population vector based on
performance using the adaptive algorithm /28.29/.

Neuronal recording

The animals were chronically implanted with
fixed stainless steel and/or tungsten microwire
arrays in motor and premotor cortical areas.
Typically we implanted four arrays of 16 wires
each, giving us ideally 64 channels. Surgery was
performed under gas anesthesia and in aseptic
conditions in accord with University TACUC and
NIH guidelines.

Upon  recovery, we recorded simultaneous
activity on all the implanted electrodes using the
Multichannel Acquisition Processor and associated
RASPUTIN neuronal recording suite (Plexon Inc.)
as the animals performed the behavioral tasks. Our
recordings consisted of a mix of well-isolated
single units and high frequency multi-unit hash.

Cortical control algorithm

In order to control the motion of the cursor from
cortical signals, we created an initial mapping
based upon a modified population vector algorithm
/6,8,18,25 28 29/ The first step in construction of a
population vector is to fit the firing rates of each of
the neurons to a linear function of the direction of
hand movement in space.
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Firing Rate = ag + ;X + ap Y + a7 (1)

For each recorded neuron, this produces a
vector ([ag, az. a3]) that corresponds to the direction
of movement for which the neuron has the highest
firing rate. As the direction of movement deviates
from this ‘preferred’ direction, the tuning function
predicts that the firing rate will decrease with the
cosine of the angle between the movement direc-
tion and the neuron’s preferred direction. Thus, this
tuning function is known as a cosine tuning
function.

To estimate the direction of motion of the hand
from the firing rates of neurons, one then takes a
weighted sum of the preferred directions. In a
standard population vector, that weighting depends
on the firing rates of the neurons.

We modified the population vector in two
crucial ways. First, we fitted two linear tuning
functions to the fring rate of each newron: one
tuning function for changes above baseline firing
rates, and another tuning function for changes
below the baseline firing rate. This accommodated
the flattening often observed in the cosine function
by the floor at zero spikes/sec. In a cosine tuning
function, the inflection point between accelerating
and decelerating firing rate is a continuous change
that occurs at the mean firing rate. In our tuning
function, there is a discontinuity at the mean firing
rate, with an abrupt change in the slope of the
curve. When we constructed the population vector,
we chose one of those two tuning functions
according to whether changes in firing rate were
increases or decreases from background rate.

Our second modification was to scale the
contribution of each neuron to the final population
vector according to the proportion of variance in
the neuron’s discharge that was captured by the
fitting equation. In a standard population vector,
each neuron with a statistically significant tuning
function contributes to the output vector with equal
weighting. This means that neurons with poor fits
to cosine tuning functions contribute as much to the
final output as neurons that fit the tuning profile
exactly. We wanted to provide a means whereby
neurons with better fit to the tuning functions
would contribute more to the final vector. To this
end we weighted the contribution from each cell by
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F(fit)"* where F(fit) is the F measuring the good-
ness of fit of the tuning function, and the power of
0.8 was chosen based on empirical experience.

Once we had established these parameters (tun-
ing profiles for each neuron and weighting factors
to be emploved for each neuron), we established a
mapping between neuronal activation and arm
movement and applied that mapping to motion of
the cursor in the wvirtual reality, With its arms
restrained, the animal controlled the cursor by
modulating its brain activity for several sets of
trials using our modified population vector. After
5-10 sets of movements to all eight targets, we
started the adaptive population vector algorithm
(aPVA).

The aPVA is similar to the backpropagation
algorithm used in neural networks /19/ in that it is a
supervised learning algorithm. The aPVA uses the
difference between the direction to the target and
the actual direction of cursor motion to modify both
the tuning parameters of the individual neurons (a;
coefficients from Eqn 1) and the weight of their
contribution to the population vector (see supple-
mentary materials to /29/ for details).

The adaptive algorithm was designed to look for
those cells that were being modulated during the
attempts to control the motion of the cursor, and to
increase their contribution to the control scheme,
while minimizing the contribution of cells that
were not being modulated. One might say that the
population vector algorithm asks: “How does the
brain control arm movement?”, whereas the
adaptive algorithm asks: “How can the brain best
control the motion of the cursor?”,

Maximum likelihood method

We chose maximum likelihood estimation (MLE)
for analyzing the activity in the observed neurons
/2,14,20,31,32/. Our goal in using this method was
to see how faithfully the firing in the observed
sample of neurons could be used to determine
which of the eight target locations was the intended
endpoint of the current movement. If we could
record from every neuron participating in the
behavior, we should have perfect information about
the animal’s behavior. As it stands, our sample is
imperfect in the sense of both having only a very
small number of neurons, and the fact that not all of

the neurons we sample have close relations to our
behavioral task. Thus, in part to compare the
effectiveness of various extraction methods, we use
MLE to assess the statistical relations between
maovement and the firing rate of a set of neurons.

The firing rates of »n neurons are given as an n-
dimensional vector r. The likelihood of observing a
particular firing rate in neuron i is given as Lr).
The MLE method requires finding a condition 4,
(e.g. movement direction) that maximizes the
likelihood of observing a particular set of firing
rates:

d = arg male{r |d; }j (2)
!

Since r is the firing rate of » neurons, solving
Eqn (1} requires finding the joint probabilities of
the firing rates for each of the conditions sampled.
Even if firing rates are described only as “high’ and
‘low’, this quickly becomes a difficult problem,
with 2" possible firing rate vectors to be sampled.
With 20 neurons, there are over a million possible
outcomes for r. At best we can acquire 1000
samples of that space - a very sparse sampling of a
20-dimensional space.

Instead, we used the multivariate normal pro-
bability density function (PDF). This function
assumes only that the firing rates of each cell fol-
low a Gaussian distribution. While this assumption
is not perfect, it provides an adequate first
approximation 1o the discharge profile of many
neurons (see Results for more details).

To compute the multivariate normal probability
density function reguires the mean, g, of the
elements of r, and the covariance, C, among the
elements of . We can compute parameters for each
target separately, and then express the multivariate
normal PDF as a conditional likelihood function:

Lirld )=
!

— ¢-\'le- D-‘?‘{r-ﬂ,}"{C_-‘J"{r-#,}l (3)
(20)"" *lc| |

We compute these values for each of the conditions
d; which we are testing, To find the ML for an
individual trial, we find the ensemble firing rate, r,
for that trial, compute L{r|d) for each of the
conditions, and then plug the results back into
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Eqn (2) to find the condition which provides the
maximum likelihood of observing r.

RESULTS

Data summary

The data used in this analysis come from a total
of 21 recording days in two animals. In monkey
‘M’, the control scheme used between 63 and 75
neurons recorded from motor and premotor cortical
areas in both hemispheres. In monkey 0, there
were between 30 and 46 neurons recorded in a
single hemisphere. The animals were both well
skilled at controlling three-dimensional cursor motion
using only brain activity.

During the arm-controlled trials, the animals
performed at essentially 100% accuracy. Every trial
which had a point-to-point movement from the
center would result in a capture of the target sphere.
Occasionally the animals would allow a maximum
reaction time following presentation of the target to
elapse and thus miss a trial.

When the arms were restrained and the brain-
controlled task begun, the animals initially per-
formed at around 50% success rates. In only half of
the trials were the animals able o use our modified
population vector to direct the cursor into a target.
However, during the last trials of any given day,
following parameter modification with the adaptive
PV A, the animals were able to acquire greater than
90% of the targets.

Within the initial span of 3-5 minutes under the
aPVA, cortically controlled cursor motion would
undergo dramatic improvement. In the first sets of
target presentations, the motion of the cursor would
typically be dominated by biases in the fitting para-
meters, and would thus tend to drift continuously in
a single direction or along a single axis. Forty to
sixty target presentations later, just a few minutes
afler starting the adaptive PVA, the animal would
be able to drive the cursor in arbitrary directions.
Our ‘early brain control” trials come from this
epoch of behavior.

After initial adaptation, the tuning parameters
would continue to change, albeit slowly. The
animal would work for another 30-90 minutes,
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showing the ability to continuously grade its con-
trol, to reverse directions, and to capture all of the
presented targets with a high degree of reliability
(see 29/ for more details of task performance).

Firing rate distributions

To gain some indication of the deviation of
firing rate distributions from normal we performed
a Kolmogorov-Smirnov test /12.21/. In the upper
part of Figure 1 we show the distribution of the
Kolmogorov statistic with respect to normal dis-
tribution among the data used in this paper. Each of
the normal distributions was generated to have the
same mean and standard deviation as the firing rate
distribution to which it was being compared. All of
our firing rate distributions were created using over
1000 samples. With an n of 1000, the Kolmogorov
statistic with Lilliefors™ correction is significant to
a level of 0.99 whenever it exceeds 0.033, There-
fore, wirtually all of our firing rate distributions
showed significant deviation from normality. In
most cases, this reflected a skew to the positive,
with more firing rates below the mean than
expected for a Gaussian distribution. This is
illustrated in the cumulative density functions (cdf)
shown at the bottom of Figure 1 for three repre-
sentative neurons, ordered in increasing deviation
from normal distributions from left to right. In each
of these plots, the data are illustrated as a solid line,
and the cdfs corresponding to normal curves with
the same mean and standard deviation are shown
by dashed lines,

In the leftmost neuron, the only real difference
between the two distributions lies in a significant
number of samples in which no spikes were
recorded. This is reflected as a difference between
the two distributions only at very low firing rates.
In both of the other cases, there is a larger
separation between the two distributions, and in
both cases it is because the firing rates are
distributed more heavily to low firing rates than
predicted by a Gaussian tuning function, Despite
these deviations, the mass of the firing rate distri-
butions fall under a normal distribution, and we use
the multivariate normal method with this caveat in
mind.
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Fig. 1: Goodness of fit between firing rates and normal distributions. The upper panel shows the distribution of the
Kolmogorov statistic between the firing rate distributions for the data used in this paper and normal distributions. In the
lower panel we show the cumulative distribution functions (cdf) for three neurons with varying degrees of fit to a normal
distribution. Solid lines show the cdfs for the data, dashed lines show edfs for corresponding normal distributions,

Maximum likelihood

The maximum likelihood method begins by
computing mean firing rates for all of the cells for
movements to each of the eight targets (g from
Eqn (3)), and the covariance matrix (Cj) among the
neurons for the same sets of movements. We
computed the firing rate initially as simply the
number of spikes that occurred between the target
onset and target capture divided by the elapsed
time.

In the cases that we describe here, the para-
meters for Eqn 3 were computed from the first set
of five movements to each of the eight targets in
the epoch being analyzed. We use three data
epochs in the analysis described here. The first set
of data comes from trials in which the cursor
motion was driven by arm movements. The second
and third data sets come from trials of direct
cortical control of cursor motion. The early brain
control trials are from the first 10 minutes of brain

control. During this phase of the experiment, the
mapping from brain activity to cursor motion is
under adaptation, but the animal’s performance,
measured as the number of successful trials, 1s
quite poor. The final data set is the late brain
control trials, in which the population vector is
fully adapted, and the animal is able to drive the
cursor into the target reliably and continuously for
extended periods.

Figure 2 shows average firing rates for two
opposite movement directions for one day’s worth
of arm movements in monkey ‘M’ We were
recording 65 cells on this day. Shown as points and
bars are the mean and standard deviation of the
firing rates observed as the animal moved the
cursor from the center position to the target located
down, lateral, and towards the monkey. The dashed
line overlaid on the plot shows the mean firing
rates of the same cells for cursor movements in the
opposite directions.

REVIEWS [N THE NEUROSCIENCES
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Fig. 2: Firing rates across a neuronal ensemble. The
mean firing rates for 63 recorded neurons are shown
for movements to two oppositely oriented targets,
The black dots show the rates for movements to
targel 4, and the dashed line for movements to target
|. The bars on the target 4 movements are standard
deviations of the firing rates for those movements.

Clearly not all the cells modulated their firing
rates as a function of movement direction. For this
particular day’s data, the variance in firing rate was
significantly modulated by movement direction in
28 of the neurons (p <0.01 as measured by
ANOVA). This is reflected in Figure 2 by the
separation of the mean firing rates between the two
conditions, The greater the degree of separation
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between the mean firing rates for each condition
and the smaller the covariance between any two
neurons, the more that neuron’s firing rate is going
to contribute to determining which target the
animal is moving towards.

Even with reasonable separations, however, the
maximum likelihood method is able to readily
classify the targets of movement based on the firing
rates observed in the ensemble. In Figure 3 we
show the outcome of computing the multivariate
normal PDF for a set of individual movements to
each of the eight targets using the same day’s data
shown in Figure 2. Each column in Figure 3
corresponds to a movement to one of the targets
(target locations are listed in Table 1). Each row
in the figure corresponds to one of the eight
conditions tested using the multivariate normal
distribution. The diameter of the circles shown at
each point is proportional to the likelihood estimate
given by Eqn 3. Thus, the third column is for a
movement to the target located down, anterior, and
medial from the center location. Each circle in the
column, starting at the bottom, is drawn with a size
proportional to the computed likelihood of the
observed ensemble discharge pattern for move-
ments to the indicated test target. Clearly, the
condition satisfying Eqn 2 is target 3. Therefore the
maximum likelihood estimate in this case chose the
correct target. In fact, in each of the eight trals
illustrated in Figure 3, the MLE was able to
correctly identify the target of movement from the
firing rates observed in the set of neurons.

TABLE 1

Target directions

Targei Target Direction

down, back, lateral
up, back, lateral
down, forward, medial
up, forward, medial
up, back, medial
down, back, medial

up, forward, lateral

= I - R e T e

down, forward, medial
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observed in that movement cccurred during movements to the test target indicated on the left, The calibration bar shows a

probability of 1077,

It this sample contained only one neuron, then
the likelihood would correspond to the value of the
Gaussian for that cell at the observed firing rate.
With multiple uncorrelated neurons, the covariance
matrix would only have variances along the dia-
gonal, and computing the joint PDF would corres-
pond to multiplying the probabilities for each of the
individual cells together in one large product. In
general, however, the firing rates between neurons
will exhibit some degree of correlation. In our case,
the covariance matrix was never simply diagonal.
The average covariances between neurons were
typically within an order of magnitude of the
variances for the individual neurons. In the case of
the data shown in Figures 2 and 3, the average
variance (o;") in the firing rates for the peurons is

47.2, and the average covariance between neurons
(o o) was 3.45. The correlation between neurons
acted as a weighting factor in Eqn 3. The more
highly two neurons were correlated, the more the
contribution to the final likelihood of two neurons
would be combined. If two neurons are perfectly
correlated, then the two together would only contri-
bute one probability to the final likelihood.

The result of multiplying together all these
individual probabilities to produce the probability
of observing a particular set of firing rates across
the entire ensemble is predictable. The final result-
ing number is typically wvanishingly small. The
scale bar at the bottom of Figure 2 indicates a mean
probability of 107, The largest value we observed
on coszuting Eqn 3 in this data set was roughly
2x 107,

REVIEWS IN THE NEUROSCIENCES
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Changes in neural code for neuroprosthetic control

As the adaptive algorithm runs, it modifies the
weighting coefficients for the population vector,
but it also modifies the tuning parameters of the
individual neurons. In Figure 4 we show the
differences between the arm-control directional
parameters and the final brain control parameters.
Each line traces a path along the surface of a unit
sphere from the preferred direction under arm
control to the preferred direction under brain
control (circle ends). In animal *M’, we recorded
cells from implants in both hemispheres, thus
producing neurons both ipsi- and contralateral to
the arm used in the arm-control task. Open circles
are for contralateral neurons. All of the neurons
shown in the figure were significantly tuned in both
tasks.

Two elements of our results can be seen in the
figure, First, there was a wide degree of variation in
how the tning of the neurons changed as the
adaptive algorithm adjusted parameters. Most of
the neurons exhibited changes in their preferred
direction between the arm movement task and the
cortically controlled cursor under the adaptive
population wvector, Preferred directions of some
neurons changed very little, whereas other neurons
changed preferred directions by nearly 180 degrees.
In the data used in this analysis, the average change
in preferred directions was between 35° and 93°
across the recorded ensembles. Second, we did not
observe any systematic changes in the preferred
directions, There was no clear tendency for the
preferred directions to rotate in any predetermined
fashion,

Nonetheless, the adaptive algorithm did produce
remarkably improved performance in the brain-
control task /297, In the arm-control task, we could
easily see when the animal was not working at the
task. It was not so easy in the cortical control tasks
as the animal was fully restrained and the cursor
continued to move. Therefore assigning an overall
success rate to the brain-control tasks involves a
certain degree of guesswork. However, using the
starting population vector, the animals could drive
the cursor into the target in as few as 50% of the
trials. Following adjustment of tuning parameters,
the animals could acquire the targets with 100%

WOLUME 14, MO, 1-2, 2003

Fig. 4: Changes in preferred direction between arm
control and final brain control, Each line is the
projection onto a unit sphere of the change in
preferred direction of an individual neuron between
the arm-control task (blank end of ling) and the
adapted  brain-control parameters (indicated by
circles). Open circles are for neurons contralateral 1o
the arm used in the arm control fask, and filled
circles are for ipsilateral neurons, All neurons shown
had significant directional tuning in both the arm-
control and the brain-control tasks.

success during task performance spanning 5-10
minute blocks.

In Figure 5 we show the average results of the
ML analysis performed on data broken into three
separate blocks: arm control, early brain control
ithe first ten complete brain-controlled movements
to the set of eight targets), and late brain control
(final ten complete brain-controlled movements to
the set of eight targets). For each of those blocks of
trial, we used the ML method to estimate. from the
ensemble brain activity alone, which target was the
target of the movement,

In the arm-control trials, we were able to
determine the target of movement using the ML
method, on average, in 65% of the trials. This was
not because of inaccuracy in performance. The
animals performed, effectively, at 100% accuracy
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Fig. 5: Frequency distributions of errors in the maxi-

mum likelihood estimate of target location. Each
circle shows the proportion of trials in which the
maximum likelihood method estimated that the
target of a trial fell the indicated distance from the
actual target, In the 3D center—eout task, targets can
be separated by 70° 1107 or 180% In both the arm
control and late brain control, the errors were well
behaved in the sense that the ML method tended to
estimate a nearer, rather than a more distant, target.

in the brain-control trials. Instead, this reflects
a lack of information contained in the sampled
ensemble of neurons. The activity in the small
ensembles did not contain complete information
about the target.

It is important to note that this statement does
not assume anything about the specific relations
between the firing rate of individual neurons and
the direction of movement. The only requirement
for tuning profiles for our ML analysis is that some
proportion of the neurons show firing rates that
change between the eight targets,

When we analyzed the early brain-control trials
with the ML method, we were able to predict the
target of the movement with only 35% accuracy on
average. The animal’s performance on this task
dropped to 43-50% correct trials. On average,
however, the animal’s performance remained sub-
stantially better than the performance of the ML
method, which could identify the correct target of
movements in successful trials only 35% of the
time.

In the late brain-control epoch, the animals
could acquire the correct target in virtually all of
the trials, and the ML method was able to correctly
identify the target of the movement in 80% of the
successful trials.

One element that might be expected of a
reasonable method for decoding neuronal signals is
a degree of orderliness in estimation errors. When
the ML method makes an error in determining
which 1s the current movement target, are those
errors randomly distributed among the other seven
targets, or is there some degree of orderliness that
biases the errors to neighboring targets?

In the 3D center—»out task that we used in this
experiment, targets can have three degrees of
separation, Targets on neighboring vertices of the
cube (e.g. 1 and 2, 3 and 4) are separated by 70"
Targets on the next level of separation (e.g. 1 and
3, 2 and 4) are separated by 1107 and of course
opposite targets (e.g. 1 and 4, 2 and 3) are sepa-
rated by 180°,

In Figure 5 we plot frequency distributions of
the errors made by the ML method for each of the
three conditions of the task: arm control, early
brain control, and late brain control. The circles
indicate by diameter how many times the ML
method classed trials into targets with a particular
separation from the actual target. The dashed line
and error bars give the average angular error
between target and ML-estimated target for each
condition.

In the arm control phase of the task, even
though we could only accurately identify the target
in 65% of the successful trials, the remainder of the
distribution is well behaved. In nearly 60% of the
remaining trials, the ML method assigned one of
the nearest neighbor targets, and the average
angular error was 35°

In the early trials of brain control, the animals’
performance was poor. The ML method could only
correctly categorize the target of each trial in 33%
of cases. More interestingly, the errors in the ML
method under this condition were far more widely
dispersed. Of the remaining trials, 50% were
assigned to the nearest neighbor target, and almost
40% to the targets once removed. The average
angular error was 62°.
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In the late brain control trials, the animals
performed much better, as did the ML method. In
this case, 83% of trials were correctly identified.
The remaining 17% of trials were assigned 60% to
the nearest neighbor, and 29% and 11% to targets
of 110" and 1807 of separation.

DISCUSSION

We trained two animals to control the motion of
a cursor in three dimensions directly from the brain
129/, There were two key elements to this training,
First. we created a closed-loop environment in
which the animals were able to observe the effect
of brain activity on the motion of the cursor. This
allowed the animals to learn and practice the
changes in neuronal firing that provided for
controlled motion of the cursor into the targets,

Second, and at least as important, our method
for generating a mapping between brain activity
and cursor motion did not rely upon providing a
best-possible estimate for what the animal intended
to do with its arm. Instead. the supervised learning
algorithm described by Taylor and colleagues /29/
allows the specific torm of the brain activity-cursor
motion mapping to be determined by the changes in
brain activity that are observed during attempts to
control the cursor,

This is reflected in the results of the maximum
likelihood analysis of the firing patterns observed
in each of the components of this task. In com-
puting the multi-variate normal, we relied on the
assumption that the firing rate observed multiple
times in a single task condition for an individual
neuron is normally distributed /1/. Importantly, the
multi-variate normal distribution takes into account
the correlations among neurons in the sample. This
is a crucial element of any such analvsis as it
prevents neurons with high degrees of correlation
from contributing independently to the estimate of
the probability,

The probabilities computed by the multi-variate
normal distribution thus form an otherwise assump-
tion free estimate of how the neurons respond
during this task. For neurons that do not change
their firing rates in any systematic way with move-
ments to the eight targets, the means measured
across the various task conditions tend to be the
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same. On the other hand, using a simple measure of
the mean firing rates during movements to each of
the eight targets does not constrain the tuning
profiles of the neurons into any particular form
such as a cosine tuning function. Therefore, this
method of computing a maximum likelihood
estimate should produce a truer representation of
the information contained within the ensemble
discharge than methods which rely on such
assumptions /27/,

Our ML method has shown that the information
about the target in an ensemble of neurons does not
need to be that high before it is possible to create a
neuroprosthetic system that provides fine control of
a device.

There are many possible reasons why using an
arm movement generated mapping between firing
rates and device motion does not provide for the
best possible control. Two are worth brief mention
here.

First, it is well known that a method such as the
population vector requires input from approxi-
mately 100 well-tuned neurons, and those neurons
must have preferred directions that span the move-
ment space with a high degree of uniformity /7.8/.
As typical in chronic implants, we were able 1o
obtain well-tuned neurons on no more than 80% of
our microwires. More typically, we found well-
tuned neurons on 30-50% of the recorded channels.
For implants with 64 wires, that could be as few as
200 well-tuned newrons. Reconstruction of arm
movements was even further complicated by the
lack of uniformity in the distribution tuning
directions.

The adaptive PV allowed preferred directions
and tuning quality to change, and in fact we
observed substantial improvements in the goodness-
of-fit of many neurons in the sample (see /29/ for
details of these results). The changes in preferred
directions may have also improved the distribution
of directions coded across the movemenl space.
These two aspects together (improvements in
tuning, and improvements in the uniformity of
tuning distributions) would have improved the
behavior of the population vector,

Alternatively, the PV based upon arm move-
ments selects directly for neurons that are most
systematically modulated in relation to arm move-
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ments. This maximizes the quality of the
population vector estimate of direction of arm
movement. However, it may also have two dele-
terious effects in designing a control scheme. It
could prevent a control algorithm from making use
of neurons that the animal can reliably control
outside the context of arm movements, It could also
force the animal to modulate the activity of neurons
that the animal has difficulty accessing outside the
same context.

The adaptive PV described by Taylor ef al. /29/
loosens these constraints, and allows a subject to
control the prosthetic device using modulation
patterns of his choice among recorded neurons of
his choice. We feel that this is a crucial distinction.
Several laboratories have described efforts 1o
cstablish better mappings between the ensemble
firing rate of motor cortical neurons and arm
movement /9,10,13,17,25,26,29,30/. These efforts
fall under two headings. Traditionally, these
analytical methods are used to provide an improved
understanding of the functions of the motor cortex
in driving arm movements. In the more recent
context, the methods are being applied to the field
of neuroprosthetics with an underlying assumption
that the more information an algorithm extracts
from a set of neurons, the better a user will be able
to control a cortically controlled prosthetic system.

Extracting increasing information from a re-
corded ensemble of course comes at an increased
computational price. We set out to find a measure
of the information contained within an ensemble so
that we could gain a specific estimate of the
information that is available to be extracted. This
would allow us to make a quantitative statement
about the relative merits of different extraction
techniques, and thus be in a better position to assess
the price being paid for that information.

However, applying the maximum likelihood
method to the firing rates observed when animals
were learning to control a prosthetic device from
cortical signals illustrated for us a key principal for
neuroprosthetic system design: producing an opti-
mal estimate, or read-out, of the intention of an
animal is not a necessary prerequisite for creating a
well-controlled device. Conversely, tying a neuro-
prosthetic control algorithm too closely to firing
rate-arm movement relationships observed during

normal arm movements can limit the fine control-
lability of a device. The key goal in design of a
neuroprosthetic system is to create a system that a
subject can control.
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