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Abstract - We have described an adaptive

signal processing method that allows fine graded

control of a cursor in three-dimensions from

cortical signals [1].  Here we describe application

of the same signal processing method to direct

cortical control of a robotic arm for a variety of

tasks.  Ou r subject w as extensiv ely traine d in

controlling a computer cursor in a 3D virtual

environment.  We applied the mapping between

cortical activity and cursor motion to endpoint

control of a robotic arm.  This algorithm was

refined further as the animal continued to make

3D point-to-point movements of the brain-

controlled robot. The animal then used the

cortically-controlled robot to retrieve food placed

at arbitrary locations within the workspace and

deliver the food to a hopper.   Finally, the animal

learned to use the cortically-controlled robot to

deliver food directly to its mouth.
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I.  INTRODUCTION

Recent publications have shown the feasibility of

using signals recorded simultaneo usly from modest

numbers of neurons to generate a unitary control

signal appropriate for directing the motion of

prosthetic d evices [1-6 ].  Early work  in this field

optimized signal extraction from limited sets of

cortical implants [4,7-10].   Recent reports in which

animals have had direct volitional control over a

device instead concentrate on the brain’s learning

capacity to increase task perform ance[1,2,5,6]. T hese

experiments are carried out in a closed-loop

environment resulting in good control of external

devices by means of a few tens o f neurons.

We have previously described one such

environment, in which animals learned to control the

motion of a computer cursor in three dimensions by

direct brain control [1].  A computer cursor, however,

is a relatively simple device, being fully specified by

a straightforward Cartesian coordinate system. The

real goal of motor neuroprosthetics is to control

something much more complex, like an arm, that may

have many more degrees of freedom organized in a

totally different coordinate system.  Here we describe

success in teaching a primate to feed itself using a

directly observed cortically controlled robotic arm.

II.  METHODOLOGY

The approach used here to develop a control

signal is identical to  the method  described  previously

[1].  We trained rhesus macaques to perform 3D

movements of a brain-controlled cursor in a virtual

environment while their arms were restrained.  The

task was a center-out task in which the animals moved

a yellow cursor sphere from a central position to one

of eight green target spheres located radially.  Cursor

movem ents were co ntrolled in rea l time by the activity

of about 40 primary motor and premotor cortical

neurons recorded from intracortically implanted

microwire arrays.

In the initial phase of each day’s experiment, the

cortical activity co ntrolled the cu rsor move ments

directly via an adaptive algorithm.  This algorithm

used an iterative process to create a brain-to-cursor-

motion decoding scheme based on how the neurons

fire when different targets were presented.  The form

of the movement control algorithm is similar to a

populatio n vector in that m ovemen t at each time step  is

determined by a vector sum of the neurons’ normalized

firing rates multiplied by a set of linear coefficients.

We used random numbers for initial values of

these coefficients, and then applied the iterative

process to improve cursor control. In a traditional

populatio n vector, these  X, Y, and  Z coefficients

would be a unit vector in each cell’s preferred

direction calculated from an initial set of baseline arm

movements. Previously we have shown that cortical

neurons’ preferred directions in the brain-controlled

cursor task are not well related to their preferred

directions d uring arm m ovemen ts.  The coe fficients

determined by the adaptive process not only reflected

the preferred directions und er brain control, but also

scaled and skewed the tuning profiles to emphasize
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Fig. 1.   Use of the virtual reality environment to teach
a monkey di rect c ortical control over  a robot arm.   In
the inset are robot trajectories for the 3d center->out

task as viewed from the monkey’s persp ective.
P = proximal, D = distal.

units which had better directional tuning or were

tuned to und er-represen ted areas o f the workspa ce. 

Each day, the initial cursor movements were not

well controlled.  Howev er, after five to ten minutes,

the coefficients had adapted enough to produce

reasonably stable cursor motion, and the animal was

switched to a robot control task for the final

refinement o f the control alg orithm. Th e animal still

watched the task in the virtual environment, and

worked for fluid rewards, but from this point on the

cortical signals w ere used to  control the m otion of a

six-axis robotic arm (Zebra Zero, IMI Inc).  The

cursor in the VR environment tracked a position

sensor (Optotrak, Northern Digital, Inc., Waterloo,

ON) mo unted on the end effector o f the robot.   Thus,

the animal observed the motion in the familiar VR

setting, but the control was directed to the robotic arm

(see Fig. 1).

For the final stages, we attached various end-

effectors to the Z ebra-zero  that allowed th e animal to

deliver food items.  In one set of experiments we used

a spoon, and the animal transported a piece of food

from a target location to a central food hopper using

the spoon (see Fig. 2).   In another case we used a

clipping device.  We would place a food item in the

clip, and the a nimal would  drive the clip to  its mouth

under cortical control and retrieve the food item from

the clip (Fig. 3).

All procedures described in this paper were

performe d under the  approv al of the Univ ersity

IACUC  and in accordanc e with NIH guidelines.

III.  RESULTS

Center Out Ta sk

Once the adaptive control algorithm had

converge d, the animal w as able to ex ert accurate

graded control over the motion of the robot in the 3D

center-out task, acquiring the targets with near 100%

accuracy.  Figure 1 shows the main layout of the

initial cortically con trolled rob otic arm exp eriment. 

The cursor in the virtual environment tracked the

motion of the cortically controlled robotic arm.   In

the lower two panels of Fig. 1 we show examples of

robotic arm motion to each of the eight targets.   In

the VR environment, the task was by all appearances

very familiar to the  animal, and th e animal was  able

easily to master d irect cortical co ntrol of the rob otic

arm.

VR Self-feeding  Task

After the animal had performed the center-out

task for liquid rewards, we began to present food for

retrieval within the a nimal’s works pace (Fig 2 ).  We

attached a position sensor to a pair of forceps that were

used to manually present small food morsels within the

workspace of the robot arm.  We also added a spoon

on an exten sion to the end -effector of the ro botic arm. 

The extension was provided to extend the reach of the

robot, and the spoon provided a means for transporting

food items using the robotic arm.  The VR target

represented the food location and the cursor showed

the spoon’s position.

At the beginning of each trial, the spoon was

located at a central start position.  An experimenter

then held a food item in an arbitrary location within the

workspace of the robotic arm, and that location was

presented as a target sphere in the VR. If the animal

successfully mo ved the spo on to a loca tion directly

under the food, a tone would sound, signaling the

experimenter to release the food into the spoon.  Then

a new target w ould app ear in the VR , correspo nding to

the location o f a delivery ap paratus pla ced direc tly in

front of the monkey’s mouth (Fig 2).  If the animal

successfully moved the spoon into the delivery

apparatus, the program inverted the spoon, dumping

the food into  the dispense r, which then p neumatically

transported  the food ar ound the v irtual reality screen  to

the monkey’s mouth.

After a brief exposure to the new task, the animal

was able to quickly move the robot arm to intercept

food morsels from locations throughout the workspace

and deliver that food to the dispenser.  We show

examples of movements to various target locations

followed by deliveries once the food had been

acquired in the lower panel of Fig. 2).  In a typical

session lasting 30 to 40 minutes, the animal would be
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Fig. 2.  Retrieving food items from arbitrary
locations.   The blue trace shows the path of the
robot while “pursuing” a moving food item.  The
inset shows a set of movements from the home
position (yellow circle) to food items (stars) and back
to the delivery  hopper.

Fig. 3.   Delivering food to the mouth using a
cortically controlled robotic arm.   The diagram
outlines the arrangement, with a piece of orange
clipped int o the robot end effec tor.   The inset
diagram shows 10 minutes worth of cortical control
trajectories from a central sta rt location.  Red traces
show cortical control when orange piece is in robot.

able to capture about 100 food rewards in 140 food

presentations. Most missed rewards were due to the

virtual cursor going out of view when the infrared

position sensor on the spoon got blocked by the food

dispenser or the animal’s arm restraints 

We also had the animal perform several trials of

tracking in which the experimenter moved the food

around the  workspac e.   The anim al was able to

reliably pursue and capture these food morsels, and

deliver those items successfully to the dispenser.

Directly Observed  Self-feeding Task

As a final stage, we removed the VR display, and

allowed the  animal to dire ctly observe  the robotic

arm, the end  effector of whic h was now a  clip.  We

attached a fo od item to the  clip, typically a sma ll

piece of orange, and allowed the animal to eat the

orange o nly if it could direc tly place the item in to its

mouth using the robotic arm (Fig. 3).

Initially, we created a home position

approximately 2 inches in front of the animal, and

started all movements from this location.  As the

animal’s performance improved (defined as the

amount of time between successful food rewards), the

home position was moved successively farther from

the animal.

In the inset to Fig. 3, we show trajectories

corresponding to approximately ten minutes of direct

cortical con trol from a ho me positio n of 8".  T he bulk

of the trajectories have a downward direction,

reflecting a bias often present in the cortical control

signals.  When the animal shuffled, or attended to the

robot, the motion would tend to follow a different

path.  The  brain contro l signal was briefly turn ed off

and the robotic arm re-homed if the arm was nearing

a boundary in the workspace.

The thicker red traces show 20 instances in which

the clip was loa ded with a sm all piece of o range.  In all

of the cases, the general trend of the motion is towards

the animal.  In 18 of the cases illustrated here, the

restrained animal was able to directly retrieve the

orange from the rob otic arm by driving the arm close

enough to its mouth.

IV.  D ISCUSSION

A number of devices might one day be controlled

by neurosp rosthetic system s, ranging from  simple

computer cursors, to transport vehicles requiring

graded two-dimensional control, to prosthetic arms

requiring gra ded con trol of many d egrees of free dom. 

We have demonstrated here that the nervous system

need not c ontrol all the d egrees of free dom ava ilable in

a controlled  device in or der to per form a useful tas k. 

Our robotic arm has six axes, and we generated

movement by rotating around five of those.  The

control signal generated from the  cortical arrays,

however, was only three-dimensional.   Because we

were app lying standard  algorithms for  robotic co ntrol,

the monkey was able to concentrate on the core

elements of the tasks – point-to-point movements of

the end-effector – rather than the complex coordinated

joint motions necessary to perform that task.

Performance of more sophisticated tasks, such as

controlling a hand, or maneuvering an arm around

obstacles, might require many more signals, but even

this is not entirely clear.  For example, even though a

complete kinematic description of the hand requires as
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many as 22 variables, in practice, both hand posture

and hand force application can be largely described

with as few as two or three independ ent variables [

15, 16].  If this is the case, we could apply a control

solution to the hand that is analogous to the endpoint

solution used  here, contro lling hand mo tion with only

2 or 3 variables.   As has been clearly shown here and

elsewhere, fine graded control of two or three degrees

of freedom can be readily accomplished with a few

tens of neurons [1,2,3,6].

VI.  CONCLUSION

It is possible to control a sophisticated device for

a signficant task usin g small numb ers of neuro ns. 

There is a question of reco rding stability to address,

but we note that at the time of these experiments, we

had recorded stable signals from this convoluted

cortex for over three years.
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