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The general utility of a neuroprosthetic device under direct cortical control
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Abstract - We have described an adaptive
signal processing method that allows fine graded
control of a cursor in three-dimensions from
cortical signals [1]. Here we describe application
of the same signal processing method to direct
cortical control of a robotic arm for a variety of
tasks. Our subject w as extensively trained in
controlling a computer cursor in a 3D virtual
environment. We applied the mapping between
cortical activity and cursor motion to endpoint
control of a robotic arm. This algorithm was
refined further as the animal continued to make
3D point-to-point movements of the brain-
controlled robot. The animal then used the
cortically-controlled robot to retrieve food placed
at arbitrary locations within the workspace and
deliver the food to a hopper. Finally, the animal
learned to use the cortically-controlled robot to
deliver food directly to its mouth.
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I. INTRODUCTION

Recent publications have shown the feasibility of
using signals recorded simultaneously from modest
numbers of neurons to generate a unitary control
signal appropriate for directing the motion of
prosthetic devices [1-6]. Early work in thisfield
optimized signal extraction from limited sets of
cortical implants [4,7-10]. Recent reportsin which
animals have had direct volitional control over a
device instead concentrate on the brain’s learning
capacity to increase task performance[1,2,5,6]. T hese
experiments are carried out in a closed- oop
environment resulting in good control of external
devices by means of afew tens of neurons.

We have previously described one such
environment, in which animals learned to control the
motion of a computer cursor inthree dimensions by
direct brain control [1]. A computer cursor, however,
is arelatively simple device, being fuly secified by
a straightforward Cartesian coordinate system. The

real goal of motor neuroprosthetics is to control
something much more complex, like an arm, that may
have many more degrees of freedom organized in a
totally different coordinate system. Here we describe
success in teaching a primate to feed itself using a
directly observed cortically controlled robotic arm.

Il. METHODOLOGY

The approach used here to develop a control
signal isidentical to the method described previously
[1]. We trained rhesusmacaques to perform 3D
movements of a brain-controlled cursor in a virtual
environment while their arms were restrained. The
task was a center-out tak in which the animals moved
ayellow cursor sphere from a central position to one
of eight green target spheres locaed radidly. Cursor
movements were controlled in real time by the activity
of about 40 primary motor and premotor cortical
neurons recorded from intracortically implanted
microwire arrays.

In the initial phase of each day’s experiment, the
cortical activity controlled the cursor movements
directly via an adaptive algorithm. This algorithm
used an iterative process to create a brain-to-cursor-
motion decoding scheme based on how the neurons
fire when different targets were presented. The form
of the movement control algorithm issimilar to a
population vector in that movement at each time step is
determined by a vector sum of the neurons’ normalized
firing rates multiplied by a set of linear coefficients.

We used random numbers for initid values of
these coefficients, and then applied the iterative
process to improve cursor control. In atraditional
population vector, these X, Y, and Z coefficients
would be a unit vector in each cell’ s preferred
direction calculated from an initial set of baseline arm
movements. Previously we have shown that cortical
neurons' preferred directions in the brain-controlled
cursor task are not well related to their preferred
directions during arm movements. The coefficients
determined by the adaptive process not only reflected
the preferred directions under brain control, but also
scaled and skewed the tuning profiles to emphasize



units which had better directional tuning or were
tuned to under-represented areas of the workspace.

Each day, theinitial cursor movements were not
well controlled. Howev er, after five to ten minutes,
the coefficients had adapted enough to produce
reasonably stable cursor motion, and the animal was
switched to arobot control tax for the final
refinement of the control algorithm. The animal still
watched the task in the virtual environment, and
worked for fluid rewards, but from thispoint on the
cortical signals were used to control the motion of a
six-axis robotic arm (Zebra Zero, IMI Inc). The
cursor in the VR environment tracked a position
sensor (Optotrak, Northern Digital, Inc., Waterl oo,
ON) mounted on the end effector of the robot. Thus,
theanimal observed the motion in the familiar VR
setting, but the control was directed to the robotic arm
(seeFig. 1).

For the final sages, we attached various end-
effectors to the Z ebra-zero that allowed the animal to
deliver food items. In one set of experimentswe used
a spoon, and the animal transported a piece of food
from atarget location to a central food hopper using
the spoon (see Fig.2). In another case we used a
clipping device. We would place afood item in the
clip, and the animal would drive the clip to its mouth
under cortical control andretrieve the food item from
the clip (Fig. 3).

All procedures described in this paper were
performed under the approval of the University
IACUC and in accordance with NIH guidelines.

I1l. RESULTS

Center Out Task

Once the adaptive control algorithm had
converged, the animal w as able to exert accurate
graded control over the motion of the robot in the 3D
center-out tak, acquiring the targets with near 100%
accuracy. Figure 1 shows the main layout of the
initial cortically controlled robotic arm experiment.
The cursor in the virtual environment tracked the
motion of the cortically controlled robotic arm. In
the lower two panels of Fig. 1 we show examples of
robotic arm motion to each of the eight targets. In
the VR environment, the task wasby all appearances
very familiar to the animal, and the animal was able
easily to master direct cortical control of the robotic
arm.
VR Self-feeding Task

After the animal had performed the center-out
task for liquid rewards, we began to present food for
retrieval within the animal’s workspace (Fig 2). We
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Fig. 1. Useof the virtual reality environment to teach
amonkey di rect corti cal control over arobotarm. In
the inset arerobot trajectories far the 3d cente->out
task as viewed from the monkey’s perspective.
P = proximal, D = distal.

attached a position sensor to a pair of forceps that were
used to manually present small food morsels within the
workspace of the robot arm. We also added a spoon
on an extension to the end -effector of the robotic arm.
The extension was provided to extend the reach of the
robot, and the spoon provided a means for transporting
food items using the robotic aim. The VR target
represented thefood location and the cursor showed
the spoon’ s position.

At the beginning of each trial, the spoon was
located at a central start position. An experimenter
then held afood item in an arbitrary location within the
workspace of the robotic arm, and that location was
presented as a target sphere in the VR. If the animal
successfully moved the spoon to alocation directly
under the food, a tone would sound, signaling the
experimenter to release the food into the spoon. Then
anew target would appear in the VR, corresponding to
the location of a delivery apparatus placed directly in
front of the monkey’s mouth (Fig 2). If the animal
successfully moved the spoon into the delivery
apparatus, the program inverted the spoon, dumping
the food into the dispenser, which then pneumatically
transported the food ar ound the virtual reality screen to
the monkey’ s mouth.

After a brief exposure to the new task, the animal
was able to quickly move the robot arm to intercept
food morsels from locations throughout the workspace
and deliver that food to the dispenser. We show
examples of movements to various target locations
followed by deliveries once the food had been
acquired in the lower panel of Fig. 2). In atypical
session lasting 30 to 40 minutes, the animal would be



Fig. 2. Retrieving food items from arbitrary
locations. The blue traceshows the peh of the
robot while “pursuing” a moving food item. The
inset shows a set of movements from the home
position (yellowcircle) to food items (stars) and back
to the delivery hopper.

able to cepture about 100 food rewards in 140 food
presentations. Most missed rewards were due to the
virtual cursor going out of view when the infrared
position sensor onthe spoon got blocked by the food
dispenser or the animal’s arm restraints

We also had theanimal perform several trials of
tracking in which the experimenter moved the food
around the workspace. The animal was able to
reliably pursue and capture these food morsels, and
deliver those items successfully to the dispenser.

Directly Observed Self-feeding Task

As afinal stage, we removed the VR display, and
allowed the animal to directly observe the robotic
arm, the end effector of which was now a clip. We
attached afood item to the clip, typically a small
piece of orange, and allowed the animal to eat the
orange only if it could directly place the item into its
mouth using the robotic arm (Fig. 3).

Initially, we created a home position
approximately 2 inches in front of the animal, and
started all movements from this location. Asthe
animal’s performance improved (defined as the
amount of time between successful food rewards), the
home position was moved successively farther from
the animal.

In the inse to Fig. 3, we show trajectories
corresponding to approximately ten minutes of direct
cortical control from a home position of 8". T he bulk
of the trajectories have a downward direction,
reflecting a bias often presentin the cortical control
signals. When the animal shuffled, or attended to the
robot, the motion would tend to follow a different
path. The brain control signal was briefly turned off
and the robotic arm re-homed if the arm was nearing
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a boundary in theworkspace.

The thicker red traces show 20 instances in which
the clip was loaded with a small piece of orange. In all
of the cases, the general trend of the motion is towards
the animal. In 18 of the cases illustrated here, the
restrained animal was able to directly retrieve the
orange from the robotic arm by driving the arm close
enough to its mouth.

IV. DiscussioN

A number of devices might one day be controlled
by neurosprosthetic systems, ranging from simple
computer cursors, to transport vehicles requiring
graded two-dimensional control, to prosthetic arms
requiring graded control of many degrees of freedom.
We have demonstrated here tha the nervoussystem
need not control all the degrees of freedom availablein
acontrolled device in order to perform a useful task.
Our robotic arm has six axes, and we generated
movement by rotating around five of those. The
control signal generated from the cortical arrays,
however, was only three-dimendonal. Because we
were applying standard algorithms for robotic control,
the monkey was able to concentrate on the core
elementsof the tasks — point-to-point movements of
the end-effector — rather than the complex coordinated
joint motions necessary to perform that task.

Performance of more sophigicated tasks, such as
controlling a hand, or maneuvering an arm around
obstacles, might require many more signals, but even
thisis not entirely clear. For example, even though a
complete kinematic description of the hand requires as

Fig. 3. Delivering food to the mouth using a
cortically controlled robotic arm. The diagram
outlines the arrangement, with a piece of orange
clipped into the robot end effector. Theinset
diagram shows 10 minutes worth of cortical control
trajectories from a central start location. Red traces
show cortical control when orange piece isinrobot.



many as 22 variables, in practice, both hand posture
and hand force applicaion can be largely described
with as few as two or three independent variables [
15, 16]. Ifthisisthe case, we could apply a control
solution to the hand that isanal ogous to the endpoint
solution used here, controlling hand motion with only
2 or 3variables. As has been clearly shown here and
elsewhere, fine graded control of two or threedegrees
of freedom can be readily accomplished with a few
tens of neurons[1,2,3,6].

VI. CONCLUSION

It ispossibleto control a sophisticated device for
a signficant task using small numbers of neurons.
There is a question of recording stability to address,
but we note that at the time of these experiments, we
had recorded stable sgnals from this convoluted
cortex for over three years.
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